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Abstract

The computation of detonation waves in heterogeneous explosives involves compressible multiphase mixtures due to

the chemical decomposition of the energetic material as well as its heterogeneous initial formulation. Also material in-

terfaces are present between the explosive and the surrounding inert or reactivematerials.Wedevelop anewmethod for the

modelling of interface problems andmultiphasemixtures in the particular limit where phases pressures and velocities relax

towards equilibrium very fast. This method is a variant of the discrete equations for multiphase mixtures proposed by

Abgrall and Saurel [J. Comput. Phys. 186 (2) (2003) 361]. The new discrete model is adapted to reacting flows with mass,

momentum and energy transfer. The model is based on the pure material equation of state only (no mixture equation of

state is used) for the computation of the reaction zone of detonation waves. The algorithm is full Eulerian and fulfills

interface conditions between mixtures and pure materials automatically. It is validated over a set of difficult test problems

with exact solution and itsmulti-dimensional capabilities are shownover problems involving a large number ofmaterials.
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1. Introduction

Computation of detonation waves in condensed energetic materials involves many fundamental prob-

lems. Among them, two are related to continuum mechanics and thermodynamics modelling and numerical

resolution. The first one is due to the multiphase feature of the condensed energetic material involving

several compressible phases (solid and gas). The second problem is related to the presence of material
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interfaces. Indeed, the explosive is always confined by other inert materials and the detonation dynamics

depends on the interactions of the various waves propagating into the explosive mixture and interacting

with the surrounding materials. These interface problems require an accurate numerical treatment.
Regarding the first problem, the multiphase feature is due to the decomposition of the condensed phase

to gaseous products. So, this mixture has a physico-chemical origin. Determination of the basic thermo-

dynamic properties of this mixture imply many difficulties. Usually, the basic flow model is composed of the

Euler equations augmented by several species conservation equations. Closing this kind of model requires

an equation of state (EOS) for the mixture, which is based on the pure substances EOS. The EOS for the

condensed material is of Mie–Gruneisen type, whose parameters are determined from the experimental

Hugoniot curve. Regarding the gas phase equation of state, two instances have to be considered.

If the reaction is very fast, the reaction zone is very thin (a few microns) and the available mechanical
energy for propulsion devices is low compared to the one of the gas products outside the reaction zone. This

is the case for most conventional applications. The reaction zone has to be resolved because it is responsible

for the detonation dynamics, but a detailed description of this zone is not necessary. A reduced gas phase

equation of state of Mie–Gruneisen type can be determined easily with the help of thermochemical codes

[4,16].

As soon as the two equations of state for pure substances (solid and gas) are available, it is possible to

build the equation of state of the mixture, also of Mie–Gruneisen type. But two equilibrium assumptions

between the two phases are needed: pressure and temperature equilibrium or pressure and density equi-
librium, etc. These types of thermodynamic closure assumptions suffer from a lack of physical validity.

In the case of thick reaction zones (from 1 mm up to 1 m), an accurate determination of the flow

variables in this zone is mandatory. The multi-component reactive material contains several solid chemical

species that consume with very different characteristic times, yielding a multi-component solid–gas mixture

whose composition varies strongly. This is a non-equilibrium phenomenon, non-isentropic, and that cannot

be computed with a thermo-chemical code. The thermodynamic gas properties must be computed with a

theoretical equation of state (BKW, virial expansions), which requires the knowledge of the gas compo-

sition and its thermodynamic variables (internal energy, density). These thermodynamic variables are not
available with conventional flow models because only the mixture energy and density can be computed

from the Euler equations. Thus, it is necessary to adopt another flow model.

Another reason for not using the Euler equations is that the building of a mixture equation of state is

quite impossible when the solid phase is governed by an EOS and the gas phase is governed by another

EOS, which is function of gas thermodynamic variables and gas composition.

Consequently, our first motivation for a multiphase flow model for detonations is based on mixture

thermodynamics considerations. This was underlined in [3,9,21,22,31,32,34].

Consider now the second problem involving interfaces between compressible materials. An explosive is
always confined by other inert materials. It is important to determine accurately the propulsive effects that

have strong coupling effects with the detonation dynamics. This second topic poses fundamental compu-

tational challenges related to the creation of artificial fluid mixtures. Such artificial mixtures appear when

the interface separating two fluids takes place in an arbitrary position into the computational cell. The

thermodynamic properties (equation of state parameters for example) being different from one fluid to the

other and function only of the pure fluid thermodynamic variables (density and internal energy) their use

with the mixture density and internal energy is problematic. Indeed the Euler equations allow us only the

determination of these mixture thermodynamic variables.
With Lagrangian or tracking methods, the interface coincides with the cell boundary. With Eulerian

methods, the interface has an arbitrary location inside the cell and extra ingredients have to be introduced

into the method or model (or both). In spite of this fundamental difficulty, Eulerian methods are attractive

because of their simplicity and efficiency. The second issue addressed by this paper is precisely the com-

putation of interface problems with Eulerian methods.
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For the past decade, considerable efforts have been done in this direction. We refer to the papers by

Benson [8], Saurel and Abgrall [32] and the references herein for an overview.

The use of Eulerian methods has been initiated by Karni [23], Abgrall [1], Karni [24], Shyue [36], Saurel
and Abgrall [32], Fedkiw et al. [14], Saurel and Abgrall [33], Abgrall and Saurel [2]. Two kinds of methods

can be exhibited in these references.

Fedkiw�s strategy is based on the level set method. The resolution of interface problems and detonations is

obtained by the samemethodology,whichuses ghost cells,mimicking boundary conditions ondiscontinuities.

The other approach is based on a multiphase modelling of the entire flow [2,33,34]. This approach is

more complicated that the previous one because there are much more equations in the system of partial

differential equations (PDEs) and non-conservative terms are present. However, this approach allows the

determination of the thermodynamics of each phase of the mixture. This method is able to deal with the
first goal of this paper, that is to say physical fluid mixtures due to chemical decomposition, as well as

artificial mixtures, the second issue. In these references, a model able to deal with physical mixtures as well

as with artificial ones was proposed. The non-conservative terms were considered and discretizations based

on physical considerations were proposed. The numerical approximations were derived by considering a

uniform flow with respect to velocities and pressures of the different phases, and the idea was to keep such

wave structure invariant by the scheme. Such approximations are valid for interfaces, which correspond to

volume fraction discontinuities in this context. Across an interface, velocities and pressures remain con-

stant, but through a shock wave, the velocities, the pressures and the volume fractions vary. Therefore the
corresponding discretization was no longer valid. Also, the method appeared to be too much dissipative on

interfaces because the Riemann solver considered only 2 waves instead of 7.

In a recent paper by Abgrall and Saurel [2], these difficulties have been cleared. The key idea is to

discretize the multiphase mixture at the microscopic level and then to average the discrete equations. It

provides a new discrete model as well as the numerical method. This procedure was called ‘‘Discrete

Equations Method’’ (DEM). This is done in the opposite way of what was done before. Indeed, it is

conventional to obtain a system of PDEs on the basis of averaging procedures, and then to discretize the

corresponding PDE system. Here, we adapt the DEM strategy to the particular context of detonation
waves and multimaterial hydrocodes. To do this, the method needs several modifications:

• The materials are reactive and it is necessary to adapt the model to such situation.

• The equations of state are complex and chemical effects need to be modelled and solved accurately.

• Multiphase mixtures encountered in the physics of detonation waves have some specificities: the mixture

behaves essentially with a single velocity and pressure [22]. A careful description of phases interaction

will lead to relaxation coefficients that will be shown to produce very fast phases pressure and velocity

equilibrium.

• The overall model and method need to be extended to an arbitrary number of phases.
• The model will be shown to obey a dissipative inequality.

• The method is extended to two-dimensions by dimensional splitting.

• The extra computational difficulties due to mass transfer, stiff chemical kinetics are explained and solved.

The present paper is organized as follows. First the reactive multiphase model is developed by using

conventional averaging procedures and continuous differential operators. Then the DEM is developed on

the basis of a microstructure topology representative of an explosive mixture. It provides the basic hy-

perbolic solver in absence of mass transfer and chemical reactions. This hyperbolic solver corresponds to

the cornerstone of the numerical method. But it is also interesting to look at the system of PDEs that are the
continuous analogue of these discrete formulas. Such system of PDEs is obtained as the continuous limit of

the discrete equations. The analysis of this limit system provides explicit formulas for the averaged inter-

facial pressures and velocities as well as all relaxation terms. This system is then compared to the one that is

obtained initially with the conventional averaging method. Both models have the same structure and the

second one contains all mechanical closure relations. The timescales of the various relaxation processes are
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analysed and it is shown that in detonation conditions the pressures and velocities relax very fast. Thus a

specific algorithm is developed for such situations. The solver stability and positivity properties are anal-

ysed. Then a series of test problems and validations is presented.
2. Theoretical model

Advanced continuummechanics and thermodynamics models of condensed heterogeneous are based on a

multiphase description. Indeed, the condensed energetic material is a multiphase mixture of several con-

densed species with a small percentage of gas.When the decomposition reaction occurs during the detonation

process, new gaseous species are produced increasing the multiphase character of the mixture and the pro-
duction of solid components may not be excluded. As an example, the schematic representation of the

detonation process of CHNO-based with aluminum and the different chemical reactions involved are given in

Fig. 1. This explosive, confined by inert materials, involves three condensed reactive species: CaHbNcOd , Al

and C that decompose under specific reactions, yielding both gaseous and condensed species.

The solid components are (CaHbNcOd , Al, Al2O3, C) while the other components belong to the gaseous

detonation products. The pure materials EOS depend on the internal composition of the phases meaning

the EOSs are function of the density qk, the internal energy of the phase ek, and the mass fractions

fYk;mgm¼1;...;Nk
:pk ¼ pkðqk; ek; fYk;mgm¼1;...;Nk

Þ. Two kinds of EOS are given in Appendices A and B: the H9
EOS [20] specially designed for the description of gaseous detonation products that are induced by CHNO-

type explosives and a Mie–Gruneisen multi-component equation of state for the reactive solid material. In

this chemical decomposition model, each of these chemical reactions has very different characteristic time.

The decomposition of the solid CaHbNcOd yields gaseous products but also a condensed species C.
Combustion of the condensed aluminum needs a gaseous species and produces gas and solid species.

Reaction (3) is of the same type, while reaction (4) involves gaseous components only. The burning laws can

be function of phase pressure, or phase temperature, or both. This example is well suited to illustrate the

multiphase multi-species feature of the kind of explosives considered in this study.
In this section, we develop the necessary multiphase model for an arbitrary number of fluids, an arbi-

trary number of species and consider mass transfer between phases as well as within phases. This work is

done at the continuous level and is close to the models by Baer and Nunziato [3], Kapila et al. [21], Saurel

and Le Metayer [34].
Fig. 1. Schematic representation of a detonation wave and chemical decomposition of a CHNO-based explosive.
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The reactive Euler equations in each phase k, k 2 ½1;N � are first considered. Nk is the number of chemical

species composing the phase k and each species m is defined by its mass fraction Yk;m. In a single phase (gas,

liquid or solid) the mass diffusion is neglected and the velocity of the chemical species is the velocity of the
considered phase:

oqk

ot
þ divðqk~ukÞ ¼ 0;

oqk~uk
ot

þ divðqk~uk �~ukÞ þ rpk ¼ 0;

oqkEk

ot
þ divððqkEk þ pkÞ~ukÞ ¼ 0;

oqkYk;m
ot

þ divðqkYk;m~ukÞ ¼ _xk;m for m 2 ½1;Nk�:

ð2:1Þ

The internal energy of each fluid is ek ¼ Ek � ð~uk �~ukÞ=2. Each sub-system is closed by a pure phase EOS of

the form pk ¼ pkðqk; ek; fYk;mgm¼1;...;Nk
Þ. The last equation expresses the chemical evolution of the mth species

within the phase k. The notations are conventional as well as the assumptions about the chemical features

of an individual phase. Note that the production term in this equation represents mass production within

the kth phase. Within the kth phase, the sum of the mass fractions equals unit. The previous assertion leads

to the relation
P

m¼1;...;Nk
_xk;m ¼ 0.

Some reactions occur at the materials interfaces and are involved in mass transfer terms between phases:

they cannot appear in these equations without considering the multiphase character of the mixture.

The multiphase flow equations are obtained by using the averaging procedure of Drew and Passman

[12]. With this procedure, the pure fluid equations (2.1) are multiplied by an indicator function Xk to select
the appropriate fluid, and are then averaged over the two-phase control volume. The indicator function Xk

is defined by:

XkðM ; tÞ ¼ 1 if M belongs to the phase k;
0 otherwise:

�
This function obeys the equation

oXk

ot
þ~rrXk ¼ 0; ð2:2Þ

where ~r represents the local interface velocity.

To select the appropriate fluid, Eqs. (2.1) are multiplied by the indicator function Xk and are volume

averaged with the operator:

hf i ¼ 1

V

Z
V
f dV ;

where f is an arbitrary flow function. We obtain:

ohX ik
ot

þ h~urX ik ¼ hð~u� rÞrX ik;

ohXqik
ot

þ divhXq~uik ¼ hqð~u� rÞrX ik;

ohXq~uik
ot

þ divhXq~u�~uik þrhXpik ¼ hprX ik þ hq~uð~u� rÞrX ik;

ohXqEik
ot

þ divhX ðqE þ pÞ~uik ¼ hp~urX ik þ hqEð~u� rÞrX ik;

ohXqYmik þ divhXqYm~ui ¼ hX _xmi þ hqYmð~u�~rÞrX i :

ð2:3Þ
ot k k k
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In the right-hand side of the species conservation equations, two source terms appear, which are related to

chemical reactions within the kth phase, hX _xmik, and the mass transfer between different phases,

hqYmð~u�~rÞrX ik. It is straightforward to obtain the average mass transfer between phases:
hqð~u�~rÞrX ik ¼

P
m¼1;...;Nk

hqYmð~u�~rÞrX ik þ
P

m¼1;...;Nk
hX _xmik ¼

P
m¼1;...;Nk

hqYmð~u�~rÞrX ik.
The other terms factor of ð~u� rÞ represent the momentum transfer due to mass transfer ðq~uÞð~u� rÞrX

and the energy transfer due to mass transfer ðqEÞð~u� rÞrX .

In the previous equations only the microscopic variables appear. They have to be linked with the

macroscopic variables that are more convenient for computations. To do this, we assume that the bulk fluid

variables are equal to their averages: qk ¼ hqki, ~uk ¼ h~uki, pk ¼ hpki, ek ¼ heki. In other words, we neglect

internal turbulence.

The term rXk is non-zero only at the interfaces and consequently defines the interface position and its
normal at themicroscopic level. Then the product frX defines the value of f at the interfaces and it is noted fi.

In order to interpret some interfacial terms, the mass transfer is removed in the multiphase system. This

is done in the sake of clarity. As a consequence, the interface conditions at the microscopic level reduce to:

pi ¼ pk and ~ui � rXk ¼~r � rXk ¼~uk � rXk.

Due to non-equilibrium effects, interface variables may have fluctuations around an average state, thus:

pi ¼ �pi þ dpi and ~ui ¼ �~ui þ d~ui such as �pi ¼ hpii and �~ui ¼ h �~uii.
The averages of the various non-conservative products can be written as,

h~urX ik ¼ h �~uirXki þ hd~uirXki ¼ �~uirak þ hd �~uirXki;

hpkrXki ¼ h�pirXki þ hdpirXki ¼ �pirak þ hdpirXki;

hðp~uÞkrXki ¼ h�pi �~uirXki þ h�pid~uirXki þ hdpi �~uirXki þ hdpid~uirXki:
Note that we used the identity hrXki ¼ rak that implicitly admits that the volume average hXki represents
the volume fraction of the phase k, that is to say ak.

We note _ak ¼ � d �~uirXk

� �
the rate of change in volume fraction due to non-equilibrium effects and

Fk ¼ dpirXkh i the average pressure drag force. By neglecting the second-order term, the three averaged

non-conservative products read:

h~urX ik ¼ h �~uirXki þ hd~uirXki ¼ �~uirak � _ak;
hpkrXki ¼ h�pirXki þ hdpirXki ¼ �pirak þ Fk;

hðp~uÞkrXki ¼ �pi �~uirak � �pi _ak þ Fk �~ui:

The modelling of these interfacial quantities remains a difficult issue of multiphase flows. To obtain a

solution of this system of equations, it is necessary to provide expressions that can be considered as in-

terfacial closure relationships. These relationships depend heavily on the kind of multiphase flow and on its

topology. They are now explained in the context of interface and detonation applications.

Modelling of the average interfacial pressure �pi and velocity �~ui. In the work of Baer and Nunziato [3] and
Kapila et al. [21] �pi is taken equal to the pressure of the most compressible phase, while �~ui is taken equal to

the velocity of the less compressible phase. In Saurel and Abgrall [32], �pi is taken equal to the mixture

pressure and �~ui to the velocity of the center of mass. In the present paper, thanks to the new homogeni-

zation method (DEM), we obtain explicit formulas for �pi and �~ui that are symmetric, compatible with the

second law of thermodynamics, and responsible for the fulfilment of interface conditions when dealing with

contact/interface problems.

Modelling of _ak ¼ �hd �~uirXki. Baer and Nunziato [3] were the first to propose to model the rate of

change in volume fraction as proportional to the phase pressure differential: _ak ¼ lDpk. The parameter l
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controls the rate at which pressure equilibrium is reached. Saurel and Abgrall [32], Kapila et al. [22] and

Saurel and Le Metayer [34] by different considerations propose to take this factor equal to infinity. In the

present paper, we provide general explicit formula for l and demonstrate that this coefficient tends to
infinity in the context of detonation applications.

Modelling of Fk ¼ hdpirXki. The latter authors have proposed and justified on physical backgrounds to

model the pressure drag force as proportional to the phase velocity differential: Fk ¼ kD~uk, where k is a

relaxation parameter that tends to infinity in the context of interface problems and detonations in con-

densed energetic materials. In the present paper, we derive explicit formula for this relaxation parameter.

We also show that it is connected to the parameter l. In the field of detonation applications, it is dem-

onstrated that it tends to infinity too.

Modelling of the mass transfer _mk ¼ hqð~u�~rÞrX ik. The mass production term _xk;m of mth species,
component of the kth phase obeys general laws for chemical reactive systems. Difficulties appear when the

different _mk have to be modelled. This mass transfer represents the general production term of phase k
through interfaces with other phases. Knowledge of the physics is required to express this term that can be

very different according to the phenomenon considered: there are no difficulties to figure out that the

mechanisms involved in the vaporization of a liquid are different of those involved in the combustion of a

solid material. For our purposes, most of the laws that give the depletion rate of a solid explosive are based

on Arrhenius laws or Vieille�s law, depending on temperatures or pressures of the different phases. Nev-

ertheless, there is no general restriction to model this term except that relation
P

k¼1;...;N _mk ¼ 0 must be
verified, which is the condition expressing the conservation of total mass in the multiphase mixture and that

the chemical kinetics verify the permanence of atomic substances.

2.1. The general model

For conveniences, we note pi ¼ �pi, ~ui ¼ �~ui.
The general continuous model (2.3) can be rewritten as (2.4) by expressing all the closure relations:

oak
ot

þ~uirak ¼ _ak þ
_mk

qIR

;

oðaqÞk
ot

þ divðaq~uÞk ¼ _mk;

oðaq~uÞk
ot

þ divðaq~u�~uÞk þrðapÞk ¼ pirak þ~F k þ _mk~ui;
oðaqEÞk

ot
þ divðaðqE þ pÞ~uÞk ¼ ðp~uÞirak þ~ui~F k � pi _ak þ _mkEIR;

oðaqYmÞk
ot

þ divðaqYm~uÞk ¼ _mmk:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð2:4Þ

The variables with subscript IR appear only when interfaces are reactive, that is when mass transfer occurs.

Determination of these variables will be discussed latter.

The multiphase equations have two formulations (2.3) and (2.4), which are the same. In the following,

the two formulations will be used indifferently. But the closure issue corresponding to the determination of
pi, ~ui, l and k as well as the numerical approximation of these equations necessitates a new homogene-

ization method that is developed in Section 3.
3. Building of a two-dimensional discrete multiphase model

The new approach based of Abgrall and Saurel [2] is extended to the simulation of detonation waves. The

method considers the numerical cellCij as a representative physical multiphase control volume. The pure fluid



A. Chinnayya et al. / Journal of Computational Physics 196 (2004) 490–538 497
equations are discretized at the grain/microscopic scale. Then these equations are averaged. A set of algebraic

relations for the flow unknowns are obtained. In the following, the development of this method is detailed.

We wish to model a dispersed two-phase flow as depicted in Fig. 2(a). It is a media composed of grains of
a reactive granular material (phase 1) into a gaseous phase (phase 2). The latter comes from the chemical

decomposition of the explosive or can be initially trapped into pores.

The model relies on the topology of this two-phase media. A macroscopic two-phase volume contains

two phases, which contains n grains of phase 1 per volume unit. The size of a microscopic volume is below

the size of the individual grain. It may only contain a fraction of the interface grain–gas (cf. Fig. 2(b)). At

this microscopic scale, the interactions between the two fluids are given by the solutions of Riemann

problems between non-miscible fluids governed by the Euler equations. The macroscopic equations are

obtained by making the inventory of all the contacts, examining the surfaces of these contacts and summing
solution of all these interface problems.

The mesh is composed of numerical cells Cij ¼�xi�1=2; xiþ1=2½� �yi�1=2; yiþ1=2½ of uniform length Dx and of

uniform height Dy. These control volumes are supposed to be larger than the elementary volume of the two-

phase media. Dt is the time step of the temporal integration.

In order to obtain the two-phase flow model in an Eulerian frame, the mesh and the two-phase flow are

superimposed. The two-phase mixture evolution is examined in the control volume Cij (cf. Fig. 3(a)) during

the time step Dt.
In the sake of clarity, no mass transfer is considered. For the calculations clarity and because the so-

lution of Riemann problem is known in only one space dimension, grains are considered to be cubic rather

than spherical. The development is made in two dimensions, the extension to three dimensions being

straightforward. The volume fraction is a surface fraction: a1 ¼ na2, a is the length of the side of the grain.

In each control volume (mesh cell), the different flow variables of the phases are constant in the cells. This

approximation is usual in Godunov-type numerical schemes.
Fig. 2. Schematic representation of the two-phase control volume and interface control volume.

Fig. 3. (a) Superimposition of the mesh and two-phase flow. (b) Magnified view of control volume Cij, phase 1 being in grey.
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In this flow representation, a1 and n are piecewise constant functions. Thus the size of a grain – char-

acteristic length – is also a piecewise constant function. This leads to the representation depicted in

Fig. 3(b).
In the following, the pure fluid instantaneous equations are recalled. We define volume, surface and

temporal averaging operators that will be needed in the building of the multiphase equations. We also

define the contact surfaces between phases inside the cells and at its boundary. This enables the evaluation

of the fluxes coming from the averaging process.

3.1. Local instantaneous pure fluid equations

At the microscopic scale, each phase obeys the Euler reactive equations that reads from system (2.1):

oW
ot

þ oF
ox

þ oG
oy

¼ 0; ð3:1Þ

W ¼ ð1; q; qu; qv; qE; qYmÞ; F ¼ ð0; qu; qu2 þ p; quv; qðE þ pÞu; quYmÞ;
G ¼ ð0; qv; quv; qv2 þ p; ðqE þ pÞv; qvYmÞ:

The first equation o1
ot þ o0

ox þ o0
oy ¼ 0 is a trivial identity that simplifies the presentation of the volume

fraction equation. We denote ~r ¼ ðrx; ryÞ. Thus system (3.1) is augmented by Eq. (2.2)

oXk

ot
þ rx

oXk

ox
þ ry

oXk

oy
¼ 0

that is used to select the fluids. After some algebraic manipulations, the evolution of the unknowns for each

phase k in each cell Cij, during the time step Dt is given by:Z Dt

0

Z
Cij

oðXkW Þ
ot

�
þ oðXkF Þ

ox
þ oðXkGÞ

oy

�
dxdydt ¼

Z Dt

0

Z
Cij

ðF
�

� rxW ÞoXk

ox
þ ðG� ryW ÞoXk

oy

�
dxdydt:

ð3:2Þ
With the previous notations and with the help of the trivial identity, the evolution of the characteristic

function is recovered. Thus (3.2) summarizes (2.2) and (3.1) in each fluid.

The terms in the right-hand side of this equation represent the Lagrangian fluxes. In the vicinity of an

interface between two fluids, the interface conditions hold: uniform pressure and velocity. Thus

F � rxW ¼ �u; 0; p; 0; pu; 0ð Þ and G� ryW ¼ �v; 0; 0; p; pv; 0ð Þ are constant at the vicinity of a two-fluid

interface (rXk 6¼~0). We note in the following:

F lag ¼ F � rxW and Glag ¼ G� ryW : ð3:3Þ

We now turn to the evaluation of the different terms of (3.2). The average multiphase discrete equations will

follow.

3.2. Average discrete equations

Each cell of the mesh contains initially two phases. The details of the derivation are made explicit for the
phase 1 only. The equations of the second phase can be obtained by changing the subscripts adequately.

The evolutionary equations of the phase 1 are:Z Dt

0

Z
Cij

oðX1W Þ
ot

�
þ oðX1F Þ

ox
þ oðX1GÞ

oy

�
dxdy dt ¼

Z Dt

0

Z
Cij

F lag oX1

ox

�
þ Glag oX1

oy

�
dxdy dt: ð3:8Þ
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Five integrals have to be evaluated I1 þ I2 þ I3 ¼ I4 þ I5

I1 ¼
Z Dt

0

Z
Cij

oðX1W Þ
ot

dxdy dt temporal term; ð3:9Þ
I2 ¼
Z Dt

0

Z
Cij

oðX1F Þ
ox

dxdy dt horizontal convective flux; ð3:10Þ
I3 ¼
Z Dt

0

Z
Cij

oðX1GÞ
oy

dxdy dt vertical convective flux; ð3:11Þ
I4 ¼
Z Dt

0

Z
Cij

F lag oX1

oy
dxdy dt Lagrangian horizontal flux; ð3:12Þ
I5 ¼
Z Dt

0

Z
Cij

Glag oX1

oy
dxdy dt Lagrangian vertical flux: ð3:13Þ

To this end, let us define the following averaging operators.

• Volume average

hf i ¼ 1

Cij

Z
Cij

f dV : ð3:4Þ

• Temporal average

~f ¼ 1

Dt

Z
Dt
f dt: ð3:5Þ

• Surface averages

�f ¼ 1

Dy

Z yjþ1=2

yj�1=2

f dy and f̂ ¼ 1

Dx

Z xiþ1=2

xi�1=2

f dx: ð3:6Þ

• Internal average

hhf ii ¼ hXf i
hX i ¼ hXf i

a
: ð3:7Þ

We have hf i ¼ �̂f ¼ �̂f .

3.3. Approximation of the temporal term I1
I1 ¼
Z Dt

0

Z
Cij

oðX1W1Þ
ot

dxdy dt ¼
Z
Cij

Z Dt

0

oðX1W1Þ
ot

dxdy dt ¼
Z
Cij

ðX1W1Þnþ1

ij

�
� ðX1W1Þnij

�
dxdy;

that is,

I1 ¼ DxDy ahhW iið Þnþ1

1;ij

�
� ahhW iið Þn1;ij

�
: ð3:14Þ
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3.4. Approximation of the horizontal convective flux I2
I2 ¼
Z Dt

0

Z
Cij

oðXF Þ1
ox

dxdy dt ¼
Z Dt

0

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

oðXF Þ1
ox

dxdy dt

¼
Z Dt

0

Z yjþ1=2

yj�1=2

ðXF Þ1;iþ1=2

�
� ðXF Þ1;i�1=2

�
dy dt: ð3:15Þ

The surface average at the abscissa i� 1=2 is:

DyXF 1;i�1=2 ¼
Z yjþ1=2

yj�1=2

ðXF Þ1;i�1=2 dy:

The case of one isolated grain of Fig. 3(b) is considered at the cell boundary as represented in Figs. 4(a) and

(b). Such configuration appears because the flow variables, in particular the characteristic length of a grain,

are piecewise constant functions. The case of several grains can be treated in the same way.

The cell boundary, delimitated by the segment �yj�1=2; yjþ1=2½, can be decomposed in several segments

associated with different kinds of contact l (Fig. 4(a)). Each type of contact l ¼ ðp; qÞ means that p is the
Fig. 4. (a) Schematic representation of the different contacts l at a cell boundary when fluid 1 volume fraction gradient is negative. (b)

Schematic representation of the different contacts l when the grain size increases discontinuously.
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fluid at the left boundary and the fluid q at the right boundary. In the case of Fig. 4(a), there are three types

of contact l ¼ 1–1, l ¼ 1–2, l ¼ 2–2. The height of contact l is denoted Sl ¼ Spq and will be determined

latter. The integral can be decomposed in a sum of elementary integrals:

DyXF 1;i�1=2 ¼
X
l

Z Sl

0

ðXF Þ1;i�1=2ðlÞdy:

In the following, there is no differences between the height of contact and the surface of contact as the

model is presented in a 2D configuration. Each elementary integral is evaluated in the following way:Z Sl

0

ðXF Þ1;i�1=2ðlÞdy � SlX �
1;i�1=2ðlÞ � F �

1;i�1=2ðlÞ ¼ SpqX �
1;i�1=2ðp; qÞF �

1;i�1=2ðp; qÞ:

The initial states of the fluids p and q, respectively, on the left and on the right of the boundary i� 1=2 will

generate pressure waves for which the solution is given by a Riemann solver. Some examples of Riemann
solvers can be found in the literature. This solution provides the value of the flux F �

1;i�1=2ðp; qÞ. X �
1;i�1=2ðp; qÞ is

the value of the characteristic function of phase 1 at the boundary i� 1=2. When fluid 1 is in contact with

fluid 1, this function is equal to 1. Its value is 0 inside the fluid 2. When fluid 1 is in contact with fluid 2, its

value depends on the interface velocity u�1;i�1=2ð1; 2Þ. When it is positive, the function X �
1;i�1=2ðp; qÞ is equal to

1 and 0 in the opposite case. When the interface velocity is positive it means that fluid 1 is coming into the

control volume. This interface velocity is also solution of the Riemann solver.

There is still to model the contact height length Sl ¼ Spq. In the case depicted in Fig. 4(a), S11 can be

evaluated by: S11 ¼ Dya1;i. Indeed, the height of contact between fluid 1 at the left of the boundary and fluid
1 at the right of the boundary is the smallest surface present at the boundary. In Fig. 4(a), the smallest

surface is the right one. We model the surface fraction by the volume fraction. The height of contact be-

tween fluid 1 and fluid 2 is equal to the difference of the two levels S12 ¼ Dyða1;i�1j � a1;ijÞ. Consequently
S22 ¼ Dya2;i�1j.

Thus the average flux at the boundary i� 1=2 is:

DyXF 1;i�1=2 ¼
X

p;q¼1;2

SpqX �
1;i�1=2ðp; qÞF �

1;i�1=2ðp; qÞ:

We can proceed in the same way for the case depicted in Fig. 4(b) when the grain size increases discon-

tinuously.
In the case depicted in Fig. 4(b), the contacts are different. We must consider the contact 1–2 that does

not exist in the case depicted in Fig. 4(a). Moreover, the heights of contact between fluids are different from

Fig. 4(a) case. Here, we have S11 ¼ Dya1;i�1j. The other heights of contact are S22 ¼ Dya2;i�1j and

S21 ¼ Dyða1;ij � a1;i�1jÞ. The values of X �
1;i�1=2ðp; qÞ and F �

1;i�1=2ðp; qÞ are deduced from a Riemann solver

between fluids p and q which are here and there of i� 1=2.
Table 1 summarises the different cases and gives formulas valid for both situations depicted in Figs. 4(a)

and (b).

Thus, the average surface horizontal convective flux at the cell boundary i� 1=2 is:

DyXF 1;i�1=2 ¼
Z yjþ1=2

yj�1=2

ðXF Þ1;i�1=2 dy

¼ S11X �
1;i�1=2ð1; 1ÞF �

i�1=2ð1; 1Þ
�

þ S12X �
1;i�1=2ð1; 2ÞF �

i�1=2ð1; 2Þ þ S21X �
1;i�1=2ð2; 1ÞF �

i�1=2ð2; 1Þ
�
:

We can proceed in the same way for the evaluation of the convective flux at the boundary iþ 1=2. I2 then
becomes



Table 1

Evaluation of the different horizontal convective fluxes at the cell boundary i� 1=2

Type of contact Surface of contact Indicator function 1 Convective flux

1–1 S11 ¼ Dyminða1;i�1j; a1;ijÞ X �
1 ð1; 1Þ ¼ 1 F �ð1; 1Þ

1–2 S12 ¼ Dymaxða1;i�1j � a1;ij; 0Þ X �
1 ð1; 2Þ ¼

1 if u�ð1; 2Þ > 0

0 otherwise

�
F �ð1; 2Þ

2–1 S21 ¼ Dymaxða1;ij � a1;i�1j; 0Þ X �
1 ð2; 1Þ ¼

1 if u�ð2; 1Þ < 0
0 otherwise

�
F �ð2; 1Þ

2–2 S22 ¼ Dyminða2;i�1j; a2;ijÞ X �
1 ð2; 2Þ ¼ 0 F �ð2; 2Þ
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I2 ¼
Z Dt

0

Z yjþ1=2

yj�1=2

ððXF Þ1;iþ1=2 � ðXF Þ1;i�1=2Þdy dt ¼ Dy
Z Dt

0

ððXF Þ1;iþ1=2 � ðXF Þ1;i�1=2Þdt

¼ DyDt ðXF
’
Þ1;iþ1=2

�
� ðXF

’
Þ1;i�1=2

�
:

For a time step small enough XF
’

¼ XF at each boundaries i� 1=2 and iþ 1=2 and the preceding equation

becomes

I2 ¼ DyDt ðXF Þ1;iþ1=2

�
� ðXF Þ1;i�1=2

�
: ð3:16Þ
3.5. Approximation of horizontal Lagrangian flux I4

The horizontal Lagrangian integral is

I4 ¼
Z Dt

0

Z
Cij

F lag oX1

ox
dxdy dt: ð3:17Þ

The latter can be decomposed into two parts

I4 ¼
Z Dt

0

Z yjþ1=2

yj�1=2

F lag

i�1=2½X1�i�1=2 dy þ
Z yjþ1=2

yj�1=2

F lag

iþ1=2½X1�iþ1=2 dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4;boundary

0BBBB@ þ
Z yjþ1=2

yj�1=2

F lag
internal½X1�internal dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I4;internal

1CCCCAdt; ð3:18Þ

I4;boundary corresponds to the Lagrangian flux that comes from the interfaces present at the cell boundary of

the control volume Cij. I4;internal corresponds to the Lagrangian flux that comes from the interfaces present

into the control volume Cij. We evaluate I4;boundary then I4;internal. The contact surfaces between the pure fluids

that must be taken into account are the same as for the evaluation of the convective fluxes. Then

DyF lag

i�1=2½X1�i�1=2 ¼
X

p;q¼1;2

Z Spq

0

F lag

i�1=2½X1�i�1=2 dy:

Each elementary integral can be obtained in the following way:Z Spq

0

F lag

i�1=2½X1�i�1=2 dy � SpqF
lag;�
i�1=2ðp; qÞ½X

�
1 �i�1=2ðp; qÞ:
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The four possible configurations (p; q ¼ 1; 2) are summarized in Table 2. The jump of the indicator function

½X �
1 � depends on the sign of the interface velocity, given by the solution of the Riemann problem. In the

configuration ð1; 2Þ – fluid 1 and fluid 2 are, respectively, at the left and right of the boundary. ½X �
1 � is equal

to )1 if the velocity is positive. Indeed, X1 is equal to 1 in the fluid 1 and X1 is equal to 0 in fluid 2. Thus the

jump is equal to )1 if fluid 1 enters the numerical cell. If the interface velocity is negative, fluid 1 exits the

numerical cell thus the jump is zero. For the configuration ð1; 1Þ, the jump is always zero because there is no

interface. Consequently, we get:

DyF lag½X1�i�1=2 ¼
Z yjþ1=2

yj�1=2

F lag½X1�
	 


i�1=2
dy dt

¼ S12½X �
1 �i�1=2ð1; 2ÞF

lag;�
i�1=2ð1; 2Þ

�
þ S21½X �

1 �i�1=2ð2; 1ÞF
lag;�
i�1=2ð2; 1Þ

�
: ð3:19Þ

We proceed in the same way for the evaluation of the horizontal Lagrangian flux at the cell boundary

iþ 1=2.
We remark that the jump of the indicator function is non-zero (½X1��i�1=2 6¼ 0 and ½X1��iþ1=2 6¼ 0) on the

segments that are the thick lines in Fig. 5.

The term I4;internal related to the interfaces present inside the two-phase control volume is now evaluated.

The interfaces that are considered are represented in Fig. 6.

The flux I4;internal is given by

I4;internal ¼
Z Dt

0

Z yjþ1=2

yj�1=2

F lag
internal½X1�internal dy dt ¼¼

Z Dt

0

X
internal interfaces

Z a

0

F lag
internal½X1�internal dy dt:

We group the interfaces by two, that correspond to the contacts (2–1) and (1–2) as shown in Fig. 6. As
½X1�internalð2; 1Þ ¼ �1 and ½X1�internalð1; 2Þ ¼ þ1, we get:

I4;internal ¼
Z Dt

0

X
number of internal grains

Z a

0

F lag;�
ij ð2; 1Þ

�
� F lag;�

ij ð1; 2Þ
�
dy dt:

We note �F ¼ 1
a

R a
0
F dy, then:

I4;internal ¼
Z Dt

0

Na
Z a

0

F lag;�
ij ð2; 1Þ

�
� F lag;�

ij ð1; 2Þ
�
dy dt;

where N ¼ nDxDy. Thus,
Table 2

Evaluation of the horizontal Lagrangian fluxes for the various configurations at i� 1=2

Type of contact Surface of contact Jump of the indicator function 1 Lagrangian flux

1–1 S11 ¼ Dyminða1;i�1j; a1;ijÞ ½X �
1 �ð1; 1Þ ¼ 0 F lag;�ð1; 1Þ

1–2 S12 ¼ Dymaxða1;i�1j � a1;ij; 0Þ ½X �
1 �ð1; 2Þ ¼

�1 if u�1ð1; 2Þ > 0
0 otherwise

�
F lag;�ð1; 2Þ

2–1 S21 ¼ Dymaxða1;ij � a1;i�1j; 0Þ ½X �
1 �ð2; 1Þ ¼

1 if u�1ð2; 1Þ > 0

0 otherwise

�
F lag;�ð2; 1Þ

2–2 S22 ¼ Dyminða2;ij�1; a2;ijÞ ½X �
1 �ð2; 2Þ ¼ 0 F lag;�ð2; 2Þ
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Fig. 5. Thick lines represent the interfaces at the cell boundaries of the control volume that produce Lagrangian fluxes.
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Fig. 6. Representation of the interfaces that are involved in the evaluation of the internal non-conservative products in the horizontal

direction. The dotted lines (horizontal interfaces) are not involved in the calculation.
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I4;internal ¼ Na
Z Dt

0

F lag;�
ij ð2; 1Þ

�
� F lag;�

ij ð1; 2Þ
�
dt ¼ Na F lag;�

ij

�

ð2; 1Þ
 

� F lag;�
ij

�

ð1; 2Þ
!
:

For a time step small enough, ~�F ¼ �F . Because the states are constant here and there the interface, �F ¼ F .
Thus,

I4;internal ¼ DtNa F lag;�ð2; 1Þ
	

� F lag;�ð1; 2Þ


ij
: ð3:20Þ

Finally

I4 ¼ I4;boundary þ I4;internal; ð3:21Þ
I4 ¼ DyDt F lag;�½X �
1 �i�1=2

�
þ F lag;�½X �

1 �iþ1=2

�
þ DtNa F lag;�ð2; 1Þ

	
� F lag;�ð1; 2Þ



ij
: ð3:22Þ
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The approximation of the convective vertical I3 as well as the vertical Lagrangian flux I5 are done in the

same way as I2 and I4, respectively.
3.6. Summary of the discrete averaged equations

The discretization of the averaged equations for multiphase flows according to the geometrical repre-

sentation of Fig. 3 is given by:

ðahW iÞnþ1

1;ij � ðahW iÞn1;ij
Dt

þ
ðXF Þ1;iþ1=2 � ðXF Þ1;i�1=2

Dx
þ
ðcXGÞ1;jþ1=2 � ðcXGÞ1;j�1=2

Dy

¼
F lag½X1�iþ1=2 þ F lag½X1�i�1=2

Dx
þ

dGlag½X1�jþ1=2 þ dGlag½X1�j�1=2

Dy
þ N
DxDy

a F lagð2; 1Þ
�

� F lagð1; 2Þ
�
ij
þ N
DxDy

a dGlagð2; 1Þ
�

� dGlagð1; 2Þ
�
ij

ð3:23Þ

The horizontal convective fluxes are given by:

XF 1;iþ1=2 ¼ maxð0; a1;ij � a1;iþ1jÞX �
1;iþ1=2ð1; 2ÞF �

iþ1=2ð1; 2Þ þminða1;iþ1j; a1;ijÞX �
1;iþ1=2ð1; 1ÞF �

iþ1=2ð1; 1Þ
þmaxð0; a1;iþ1j � a1;ijÞX �

1;iþ1=2ð2; 1ÞF �
iþ1=2ð2; 1Þ;
XF 1;i�1=2 ¼ maxð0; a1;i�1j � a1;ijÞX �
1;i�1=2ð1; 2ÞF �

i�1=2ð1; 2Þ þminða1;ij; a1;i�1jÞX �
1;i�1=2ð1; 1ÞF �

i�1=2ð1; 1Þ
þmaxð0; a1;ij � a1;i�1jÞX �

1;i�1=2ð2; 1ÞF �
i�1=2ð2; 1Þ:

The vertical convective fluxes are given by:

cXG1;jþ1=2 ¼ maxð0; a1;ij � a1;ijþ1ÞX �
1;jþ1=2ð1; 2ÞG�

jþ1=2ð1; 2Þ þminða1;ijþ1; a1;ijÞX �
1;jþ1=2ð1; 1ÞG�

jþ1=2ð1; 1Þ
þmaxð0; a1;ijþ1 � a1;ijÞX �

1;jþ1=2ð2; 1ÞG�
jþ1=2ð2; 1Þ;
cXG1;j�1=2 ¼ maxð0; a1;ij�1 � a1;ijÞX �
1;j�1=2ð1; 2ÞG�

j�1=2ð1; 2Þ þminða1;ij; a1;i�1jÞX �
1;j�1=2ð1; 1ÞG�

j�1=2ð1; 1Þ
þmaxð0; a1;ij � a1;ij�1ÞX �

1;j�1=2ð2; 1ÞG�
j�1=2ð2; 1Þ:

The horizontal Lagrangian fluxes are given by:

F lag½X1�iþ1=2 ¼ maxð0; a1;ij � a1;iþ1jÞ½X1��iþ1=2ð1; 2ÞF
lag�
iþ1=2ð1; 2Þ

þmaxð0; a1;iþ1j � a1;ijÞ½X1��iþ1=2ð2; 1ÞF �
iþ1=2ð2; 1Þ;
F lag½X1�1;i�1=2 ¼ maxð0; a1;i�1j � a1;ijÞ½X1��i�1=2ð1; 2ÞF
lag;�
i�1=2ð1; 2Þ

þmaxð0; a1;ij � a1;i�1jÞ½X1��i�1=2ð2; 1ÞF
lag;�
i�1=2ð2; 1Þ:

The vertical Lagrangian fluxes read:

dGlag½X1�jþ1=2 ¼ maxð0; a1;ij � a1;ijþ1Þ½X1��jþ1=2ð1; 2ÞG
lag;�
jþ1=2ð1; 2Þ

þmaxð0; a1;ijþ1 � a1;ijÞ½X1��jþ1=2ð2; 1ÞG
lag;�
jþ1=2ð2; 1Þ;
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dGlag½X1�j�1=2 ¼ maxð0; a1;ij�1 � a1;ijÞ½X1��j�1=2ð1; 2ÞG
lag;�
1;j�1=2ð1; 2Þ

þmaxð0; a1;ij � a1;ij�1Þ½X1��j�1=2ð2; 1ÞG
lag;�
1;j�1=2ð2; 1Þ:

In these formulas ðp; qÞ represents the configuration where fluid p is at the left (or bottom) of the boundary

and fluid q on the right (or top) of the boundary.

This discrete formulation (3.23) is difficult to analyse for physical interpretation. In the following par-

agraph, the continuous limit of these equations is derived and analysed. These discrete equations represent
the numerical scheme that will be used in the numerical simulations.
4. Continuous limit of the discrete equations

The aim of this section is to derive the continuous analogue of system (3.23) as a system of partial

differential equations. It will be shown that the discrete equations contain implicitly the relaxation terms

as well as the expressions for the averaged interfacial pressure and velocity. Knowledge of the con-
tinuous limit is helpful for a better understanding of the model structure and properties. The contin-

uous limit of the discrete equations consists in determining the system of PDE that results from Eq.

(3.23) when Dt, Dx and Dy tend to zero. This system of PDE is always hyperbolic and satisfies a

dissipative inequality. The timescales of the relaxation processes will inform that the multiphase mix-

tures involved in the physics of detonation waves behaves essentially with a single velocity and pressure

[22].

When the mesh spacing and the time step tend to zero, some averages simplify:

�f ! hf i; f̂ ! hf i; hhf ii ! hf i: ð4:1Þ

The demonstration will be done for phase 1 only. Subscript 1 will be sometimes omitted. Eq. (3.23) is

recalled:

ðahhW iiÞnþ1

1;ij � ðahhW iiÞn1;ij
Dt

þ
ðXF Þ1;iþ1=2 � ðXF Þ1;i�1=2

Dx
þ
ðcXGÞ1;jþ1=2 � ðcXGÞ1;j�1=2

Dy

¼
F lag½X1�iþ1=2 þ F lag½X1�i�1=2

Dx
þ

dGlag½X1�jþ1=2 þ dGlag½X1�j�1=2

Dy
þ na F lagð2; 1Þ

�
� F lagð1; 2Þ

�
ij

þ na dGlagð2; 1Þ
�

� dGlagð1; 2Þ
�
ij
: ð3:23Þ

It is decomposed into seven terms:
T1 þ T2 þ T3 ¼ T4 þ T5 þ T6 þ T7: ð4:2Þ
4.1. Continuous limit of the temporal term
T1 ¼
ðahhW iiÞnþ1

1;ij � ðahhW iiÞn1;ij
Dt

!
Dt!0

oahW i
ot

¼ oaW
ot

: ð4:3Þ
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4.2. Continuous limit of the horizontal convective flux

The horizontal convective flux reads:

T2 ¼
ðXF Þ1;iþ1=2 � ðXF Þ1;i�1=2

Dx
: ð4:4Þ

According to (4.1), we get:

T2 ¼
ðXF Þ1;iþ1=2 � ðXF Þ1;i�1=2

Dx
!

Dx!0

oahF i
ox

¼ oaF
ox

: ð4:5Þ
4.3. Continuous limit of the horizontal Lagrangian flux

In the x-direction, Lagrangian terms decompose into two terms T4 and T6. Each term is examined

separately. The continuous limit of T4 becomes horizontal non-conservative products. The continuous limit

of T6 is the horizontal relaxation term.

T4 ¼
F lag½X1�iþ1=2 þ F lag½X1�i�1=2

Dx
: ð4:6Þ

The following notations are introduced:

xþ ¼ maxðx; 0Þ ¼ xþ jxj
2

; x� ¼ minðx; 0Þ ¼ x� jxj
2

and da1;iþ1=2 ¼ a1;iþ1 � a1;i;
dðxþÞ
dx

¼ HðxÞ and
dðx�Þ
dx

¼ �Hð�xÞ such as H the Heaviside function;
sgnðxÞ ¼ þ1 if xP 0;
�1 if x < 0:

�
The Lagrangian fluxes read

DxT4 ¼ F lag½X1�iþ1=2 þ F lag½X1�i�1=2

¼ sgnðu�Þþda�F lag;�ð1; 2Þ
	 


i�1=2

�
þ sgnðu�ÞþdaþF lag;�ð2; 1Þ
	 


i�1=2
� sgnðu�Þ�da�F lag;�ð1; 2Þ
	 


iþ1=2

� sgnðu�Þ�daþF lag;�ð2; 1Þ
	 


iþ1=2

�
:

To proceed in these calculations, the various terms are developed with the help of the acoustic Riemann

solver of Godunov for the Euler equations (see [39]). Consider a left state 1 and a right state 2. The pressure

and velocity solution of the Riemann problem, under acoustic approximation, are given by:

pð1; 2Þ ¼ Z2p1 þ Z1p2
Z1 þ Z2

þ Z1Z2

Z1 þ Z2

ðu1 � u2Þ and uð1; 2Þ ¼ Z1u1 þ Z2u2
Z1 þ Z2

þ p1 � p2
Z1 þ Z2

: ð4:7aÞ

For a left state 2 and a right state 1, symmetric expressions are obtained:

pð2; 1Þ ¼ Z2p1 þ Z1p2
Z1 þ Z2

þ Z1Z2

Z1 þ Z2

ðu2 � u1Þ and uð2; 1Þ ¼ Z1u1 þ Z2u2
Z1 þ Z2

þ p2 � p1
Z1 þ Z2

; ð4:7bÞ

ck and Zk ¼ ðqcÞk are, respectively, the sound speed and the acoustic impedance of phase k.
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Such solver is valid for the present analysis because we are precisely looking for the continuous limit of

the discrete equations. For such limit, it is implicitly assumed that the flow functions are smooth. Thus the

acoustic solver is a correct approximation of the exact Riemann solver. At the boundary cell iþ 1=2, we
have

u�iþ1=2ð1; 2Þ ¼
Z1u1;i þ Z2u2;iþ1

Z1 þ Z2

þ p1;i � p2;iþ1

Z1 þ Z2

:

Applying conventional Taylor expansions, we get

u2;iþ1 	 u2;i þ Dx
ou2
ox

and p2;iþ1 	 p2;i þ Dx
op2
ox

;

u�iþ1=2ð1; 2Þ 	
Z1u1;i þ Z2u2;i

Z1 þ Z2

þ p1;i � p2;i
Z1 þ Z2

þ Dx
Z1 þ Z2

Z2

ou2
ox

�
� op2

ox

�
;

u�iþ1=2ð1; 2Þ 	
Z1u1;i þ Z2u2;i

Z1 þ Z2

þ p1;i � p2;i
Z1 þ Z2

¼ u�ð1; 2Þ at first order:

In the limit Dx ! 0, u�iþ1=2ð1; 2Þ 	 u�i�1=2ð1; 2Þ 	 u�ð1; 2Þ and also u�iþ1=2ð2; 1Þ 	 u�i�1=2ð2; 1Þ 	 u�ð2; 1Þ. The
same expansion is made on the pressure. Thus the following approximations hold for the Lagrangian flux

F lag;�
iþ1=2ð1; 2Þ 	 F lag;�

i�1=2ð1; 2Þ 	 F lag;�ð1; 2Þ and F lag;�
iþ1=2ð2; 1Þ 	 F lag;�

i�1=2ð2; 1Þ 	 F lag;�ð2; 1Þ. So:

PDxT4 ¼ F lag;�½X1�iþ1=2 þ F lag;�½X1�i�1=2

¼ sgnðu�Þþda�i�1=2

��
� sgnðu�Þ�da�iþ1=2

�
F lag;�ð1; 2Þ

þ sgnðu�Þþdaþi�1=2

�
� sgnðu�Þ�daþiþ1=2

�
F lag;�ð2; 1Þ

�
:

After expanding da, we get

DxT4 ¼ F lag½X1�iþ1=2 þ F lag½X1�i�1=2

¼ sgnðu�Þþ da�i

��
þ Dx

2
Hð � da�i Þ

oðdaÞ�i
ox

�
� sgnðu�Þ� da�i

�
� Dx

2
Hðda�i Þ

oðdaÞ�i
ox

��
F lag;�ð1; 2Þ

þ sgnðu�Þþ daþi

��
� Dx

2
Hð � daþi Þ

oðdaÞþi
ox

�
� sgnðu�Þ� da�i

�
� Dx

2
Hðdaþi Þ

oðdaÞþi
ox

��
F lag;�ð2; 1Þ:

Consequently, we get,

DxT4 ¼ F lag;�½X1�iþ1=2 þ F lag;�½X1�i�1=2 ¼ ðsgnðuÞþ � sgnðuÞ�Þda�i F lag;�ð1; 2Þ
þ ðsgnðuÞþ � sgnðuÞ�Þdaþi F lag;�ð2; 1Þ;

DxT4 ¼ F lag;�½X1�iþ1=2 þ F lag;�½X1�i�1=2 ¼ da�i F
lag;�ð1; 2Þ þ daþi F

lag;�ð2; 1Þ;

T4 ¼ F lag;�
I

da
Dx

;
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where

F lag
I ¼

uI
0

pIX
0

pIX uI
0

0BBBBBB@

1CCCCCCA with

uI ¼
Z1u1 þ Z2u2
Z1 þ Z2

þ sgn
oa1
ox

� �
p2 � p1
Z1 þ Z2

;

pIX ¼ Z2p1 þ Z1p2
Z1 þ Z2

þ sgn
oa1
ox

� �
Z1Z2

Z1 þ Z2

ðu2 � u1Þ:

8>>><>>>:
Thus when Dx tends to zero,

T4 ¼
F lag½X1�iþ1=2 þ F lag½X1�i�1=2

Dx
!

Dx!0
F lag
I

oa
ox

: ð4:8aÞ

Remark that we have determined a component of the average interfacial velocity uI as well as the average of
the interfacial pressure pIX that exerts at the boundaries of the two-phase control volume in the x-direction.
These expressions depend on the sign of the volume fraction gradient: sgn oa1

ox

	 

. Indeed, according to its

sign, either fluid 1 on the left is in contact with fluid 2 on the right or the opposite. The Riemann problem

solutions (4.7a) and (4.7b) that determine the appropriate interface pressure and velocity are summarized in

concise formulas depending on the sign of the volume fraction gradient.

T6 results from the fluctuations of interface variables inside the two-phase control volume:

T6 ¼ naðF lagð2; 1Þ � F lagð1; 2ÞÞij

According to (4.7), the fluctuations of the interface velocity and pressure become

uð1; 2Þ � uð2; 1Þ ¼ 2
p2 � p1
Z1 þ Z2

and pð2; 1Þ � pð1; 2Þ ¼ 2
Z1Z2

Z1 þ Z2

ðu1 � u2Þ:

Finally,

T6 ¼ naðF lagð2; 1Þ � F lagð1; 2ÞÞij ¼

lðp1 � p2Þ
0

kðu1 � u2Þ
0

ku0Iðu1 � u2Þ � lp0Iðp1 � p2Þ
0

0BBBBBB@

1CCCCCCA ð4:8bÞ

with

u0I ¼
Z1u1 þ Z2u2
Z1 þ Z2

and p0I ¼
Z2p1 þ Z1p2
Z1 þ Z2

; l ¼ s
2ðZ1 þ Z2Þ

and k ¼ lZ1Z2:

s ¼ 4na is the exchange area between the phases 1 and 2.

The same calculation are made for all the vertical fluxes.

4.4. The continuous model

From the preceding results (4.3), (4.4), (4.5), (4.8a), (4.8b) the system of PDEs for the multiphase mixture

is obtained:

oa1
ot

þ uI
oa1
ox

þ vI
oa1
oy

¼ 2lðp1 � p2Þ; ð4:9aÞ
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oðaqÞ1
ot

þ oðaquÞ1
ox

þ oðaqvÞ1
oy

¼ 0; ð4:9bÞ
oðaquÞ1
ot

þ oðaqu2 þ apÞ1
ox

þ oðaquvÞ1
oy

¼ pIX
oa1
ox

þ kðu2 � u1Þ; ð4:9cÞ
oðaqvÞ1
ot

þ oðaquvÞ1
ox

þ oðaqv2 þ apÞ1
oy

¼ pIY
oa1
oy

þ kðv2 � v1Þ; ð4:9dÞ
oðaqEÞ1
ot

þ oðaðqE þ pÞuÞ1
ox

þ oðaðqE þ pÞvÞ1
oy

¼ pIX uI
oa1
ox

þ pIY vI
oa1
oy

þ k½u0Iðu2 � u1Þ þ v0Iðv2 � v1Þ� � 2lp0Iðp1 � p2Þ; ð4:9eÞ
oðaqYmÞ1
ot

þ oðaquYmÞ1
ox

þ oðaqvYmÞ1
oy

¼ 0: ð4:9fÞ

The volume fraction obeys a saturation constraint a1 þ a2 ¼ 1.

The interfacial velocity has the following components:

uI ¼ u0I þ sgn
oa1
ox

� �
p2 � p1
Z1 þ Z2

with u0I ¼
Z1u1 þ Z2u2
Z1 þ Z2

; ð4:10Þ
vI ¼ v0I þ sgn
oa1
oy

� �
p2 � p1
Z1 þ Z2

with v0I ¼
Z1v1 þ Z2v2
Z1 þ Z2

:

The interfacial pressures expresses:

pIX ¼ p0I þ sgn
oa1
ox

� �
Z1Z2

Z1 þ Z2

ðu2 � u1Þ and pIY ¼ p0I þ sgn
oa1
oy

� �
Z1Z2

Z1 þ Z2

ðv2 � v1Þ ð4:11Þ

with

p0I ¼
Z2p1 þ Z1p2
Z1 þ Z2

:

The continuous limit exhibits relaxation processes: a drag force (velocity relaxation) and a pressure re-

laxation.

The pressure relaxation coefficient is l ¼ s
2ðZ1 þ Z2Þ

: ð4:12Þ
The velocity relaxation coefficient is k ¼ lZ1Z2: ð4:13Þ
The exchange area between the phases is s ¼ 4na: ð4:14Þ
The multiphase equations have been found with the help of the acoustic solver. The difference between the
acoustic solver and another Riemann solver is only second order. Thus the use of another Riemann solver

will not change the continuous limit of the discrete equations. For these calculations, the acoustic solver

was found to be the more convenient.
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These results show that the average interfacial pressures and velocity that exert at the boundary of the

two-phase control volume depend on the volume fraction gradient and velocity or pressure difference.

These interfacial pressure and velocity are different of those applying inside the two-phase control volume.
Moreover, it appears that the velocity and pressure relaxation coefficients are coupled.

4.5. Mathematical analysis of the continuous model

In one dimension, the model reads with primitive variables Vk ¼ ða; q; u; v; p; YmÞk,

oVk
ot

þ Ak
oVk
ox

¼ Sk: ð4:15Þ

The Jacobian matrix reads

Ak ¼

uI 0 0 0 0 0
qk
ak
ðuk � uIÞ uk qk 0 0 0
pk�pIX
akqk

0 uk 0 1
qk

0

0 0 0 uk 0 0
qkc

2
IX

ak
ðuk � uIÞ 0 qkc

2
k 0 uk 0

0 0 0 0 0 uk

0BBBBBBBB@

1CCCCCCCCA
ð4:16Þ

with

c2IX ¼

pIX
q2

� oe
oq

jP
oe
op

jq

an interface sound speed, and the source term

Sk ¼ 2lDp;
2qk

ak
lDp;

k
ðaqÞk

Du;
k

ðaqÞk
Dv;

k

ak
oek
opk

���
qk

½ðuI � ukÞDuþ ðvI � vkÞDv� �
2qkðc0kIÞ

2

ak
lDp; 0

0B@
1CA

ð4:17Þ

Du ¼ u2 � u1 and Dv ¼ v2 � v1 represent the velocity differences. Dp ¼ p1 � p2 is the pressure difference.

The eigenvalues of the propagation matrix Ak are always real. They are: uI interface velocity, uk þ ck,
uk � ck and uk which are the acoustic wave speeds and the speed of the contact discontinuity into the

phase k.

The system of PDE is always hyperbolic. The model is also conservative regarding the mixture. All

closure relations for pI ;~uI ; k and l are symmetrical with respect to the phases.

4.6. Dissipative inequality

With no mass transfer, interactions between phases are given by the solution of Riemann problems. The

Lagrangian fluxes at the microscopic scale give non-conservative products and relaxation terms at the

macroscopic scale. We must check that these relations are compatible with the entropy inequality:

ðaqÞ1T1
dg1
dt

þ ðaqÞ2T2
dg2
dt

P 0; ð4:19Þ
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gk represents the entropy of phase k. Following Gibbs identity we have:

ðaqÞkTk
dgk
dt

¼ ðaqÞk
dek
dt

�
þ pk

dð1=qÞk
dt

�
:

Consider phase 1. After some algebraic manipulations, we get the internal energy equation for phase 1

(d
dt ¼ o

ot þ uk o
ox þ vk o

oy is the material derivative).

ðaqÞ1
de1
dt

þ ðapÞ1
ou1
ox

�
þ ov1

oy

�
¼ ðpIX � p1ÞðuI � u1Þ

oa1
ox

þ ðpIY � p1ÞðvI � v1Þ
oa1
oy

þ k½ðu0I � u1Þ

� ðu2 � u1Þ þ ðv0I � v1Þðv2 � v1Þ� � 2lp0Iðp1 � p2Þ; ð4:20Þ

that is

ðaqÞ1T1
dg1
dt

¼ ðpIX � p1ÞðuI � u1Þ
oa1
ox

þ ðpIY � p1ÞðvI � v1Þ
oa1
oy

þ k½ðu0I � u1Þðu2 � u1Þ

þ ðv0I � v1Þðv2 � v1Þ� � 2lðp0I � p1Þðp1 � p2Þ: ð4:21Þ
We now examine the sign of the four terms on the right-hand side of this equation.

It appears that:

k½ðu0I � u1Þðu2 � u1Þ þ ðv0I � v1Þðv2 � v1Þ� ¼ k
Z2

Z1 þ Z2

ðu2
h

� u1Þ2 þ ðv2 � v1Þ2
i
P 0; ð4:22Þ
2lðp0I � p1Þðp2 � p1Þ ¼ 2l
Z1

Z1 þ Z2

ðp2 � p1Þ2 P 0; ð4:23Þ
ðpIX � p1ÞðuI � u1Þ
oa1
ox

¼ Z1

ðZ1 þ Z2Þ2
ðZ2ðu2 � u1Þþ sgn

oa
ox

� �
ðp2 � p1ÞÞ Z2sgn

oa
ox

� �
ðu2 � u1Þðp2 � p1Þ

! )
oa1
ox

;

(

ðpIX � p1ÞðuI � u1Þ
oa1
ox

¼ Z1

ðZ1 þ Z2Þ2
Z2ðu2
�

� u1Þ þ sgn
oa1
ox

� �
ðp2 � p1Þ

�2

sgn
oa1
ox

� �
oa1
ox

P 0;

ð4:24aÞ
ðpIY � p1ÞðvI � v1Þ
oa1
oy

¼ Z1

ðZ1 þ Z2Þ2
Z2ðv2
�

� v1Þ þ sgn
oa1
oy

� �
ðp2 � p1Þ

�2

sgn
oa1
oy

� �
oa1
oy

P 0:

ð4:24bÞ

Consequently, the model predicts a non-decreasing entropy for phase 1:

ðaqÞ1T1
dg1
dt

P 0: ð4:25Þ

The same inequality is obtained for phase 2. As the two entropies always increase or remain constant, the

entropy for the mixture defined in (4.19) also increases or remain constant. The second law of thermo-

dynamics (4.19) is fulfilled.
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4.7. Physical interpretation

The model can be written in the following way:

oðaW Þk
ot

þ oðaF Þk
ox

þ oðaGÞk
oy

¼ F lag
I

oak
ox

þ Glag
I

oak
oy

þRelaxðW Þ ð4:26Þ

such as F lag
I ¼ ð�uI ; 0; pIX ; 0; pIX uI ; 0Þ, Glag

I ¼ ð�vI ; 0; 0; pIY ; pIY vI ; 0Þ.
Let us define the operators,

TransportðaW Þ ¼ oðaF Þk
ox

� F lag
I

oak
ox

þ oðaGÞk
oy

� Glag
I

oak
oy

;

RelaxðW Þ ¼ ð2lDp; 0; kDu; kDv; k½uIDuþ vIDv� � 2p0IlDp; 0Þ:

Then we get

oðaW Þk
ot

þ TransportðaW Þ ¼ RelaxðW Þ: ð4:27Þ

These two operators represent the crossing of the two-phase control volume by waves. TransportðaW Þ is a
hyperbolic operator. It guarantees that the transient solution will feature waves. Typically the passage of a

wave over a quiescent bed initially at thermodynamic equilibrium will cause the two phases to be brought to

different states of velocity and pressure behind the wave. Processes of velocity and pressure relaxation

RelaxðW Þ will attempt to erase these differences and edge the phases towards equilibrium. Fig. 7 represents

the chronology of these events. The waves will be followed by relaxation zones whose length scales depend

in our model on the grain size and on the phases compressibility.

Fluctuations of the interface quantities inside the control volume give birth to relaxation processes.

Fluctuations of interface velocity produce pressure relaxation. Fluctuation of interface pressure produce
velocity relaxation.

hdpirX1i ¼DEMna
p�ð2; 1Þ � p�ð1; 2Þdp�ð2; 1Þ � dp�ð1; 2Þ

 !
!Continous Limit

kð~u1 �~u2Þ; ð4:28Þ
hduirX1i ¼DEMnaðu�ð2; 1Þ � u�ð1; 2ÞÞ þ nað dv�ð2; 1Þ � dv�ð1; 2ÞÞ !Continuous Limit � 2lðp1 � p2Þ: ð4:29Þ

A difference of pressure between the phases causes the volume fraction to vary until the two pressures be

equal. This pressure difference represents the forces that act on the surface of the grains. This force works at
Fig. 7. Chronology of the crossing of the two-phase media by a wave.
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the power 2p0Ilðp1 � p2Þ at the pressure p0I , which is the average pressure within the two-phase control

volume. There is a second relaxation process represented by a drag force kð~u2 �~u1Þ. It tends to erase the

difference of velocities between phases. Its power is ~u0Ikð~u2 �~u1Þ. ~u0I is the average of interface velocities
within the control volume. The power of these two forces comes from

hdðpiuiÞrX1i ¼DEMna ðpuÞ�ð2; 1Þ
�

� ðpuÞ�ð1; 2Þ
�
þ na dðpvÞ�ð2; 1Þ

�
� dðpvÞ�ð1; 2Þ

�
!Continuous Limit

k u0Iðu2
�

� u1Þ þ v0Iðv2 � v1Þ

� 2lp0Iðp1 � p2Þ: ð4:30Þ

These two relaxation processes come from the presence of interfaces at the microscopic level, which tend to

impose in average – at the macroscopic level – their local conditions: equality of pressure and velocity

through microscopic interfaces.

Remark. In the particular case of a mixture of solid particles (phase 1) and gas (phase 2), the following

hypothesis can be made Z1 
 Z2 (the solid acoustic impedance is much greater than the gas one). This is

true in atmospheric conditions. After some simplifications, conventional modelling of interfacial velocity
and pressure are recovered. In a two-phase volume, the average interfacial velocity u0I identifies with the

solid velocity:

u0I 	 u1 and v0I 	 v1 ð4:31Þ

and the average interfacial pressure p0I identifies with the gas pressure:

p0I 	 p2: ð4:32Þ

We can notice that these approximations are no longer valid in the field of detonation waves where the

acoustic impedances of the different materials are of the same order.

4.8. Timescales for the relaxation processes

In the particular case of solid particles (phase 1) into a gas phase (phase 2) under atmospheric conditions,

the following assumption can be made Z1 
 Z2. After these simplifications, the signification of the relax-
ation coefficients is examined.

The relaxation coefficient becomes:

l 	 2a1
Z1a

; ð4:33Þ
k 	 2a1
a

Z2: ð4:34Þ

These coefficients can be understood with the following analysis.

Consider a solid particle at a pressure p1 into a gas at pressure p2. The two pressures being different,

acoustic waves propagate into the solid and the gas due to a spherical shock tube. Waves propagate to the

center of the solid sphere then reflect to the solid–gas interface (see Figs. 8 and 9).

The characteristic time for the two pressures to equilibrate is of the order of srelaxP ¼ 2a=c1, a is here the
radius of the particle and c1 is the sound speed of the solid phase. We have

oa
ot

¼ up;i; up;i the interfacial velocity of the particle



Fig. 8. Spherical solid particle into a gas.

Interface path 

a r 

t 

Fig. 9. Wave diagram ðr; tÞ.
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The Newton�s law gives q1
oup
ot ¼ rp, where up is the radial velocity inside the particle. Then q1

up;i
srelaxP

/ Dp
a ,

where Dp is the difference between the solid pressure and the gas pressure.

oa
ot

/ Dp
q1

srelaxP
a

with srelaxP ¼ 2a=c1

then

oa
ot

/ Dp
q1c1

:

As a1 ¼ na2, n is the number of particles per volume unit. The following assessment holds

oa
ot

/ 2a1
a

DP
ðqcÞ1

;

which defines the following pressure relaxation coefficient l ¼ 2a1
Z1a
. In this case, the discrete equations

method provides the same estimate for this coefficient (4.33).

There is a correlation between the pressure relaxation and the velocity relaxation. The latter is modelled

by a pressure drag kðu2 � u1Þ that comes from the fluctuations of the pressures along the surface of the

particle. As the phases velocities are different, the upstream pressure is different from the downstream

pressure.

Estimation of the velocity relaxation time can be done as follows:

oðaquÞ1
ot

¼ kðu2 � u1Þ;



516 A. Chinnayya et al. / Journal of Computational Physics 196 (2004) 490–538
ou1
ot

¼ k
ðaqÞ1

ðu2 � u1Þ; i:e:;
ou1
ot

¼ ðu2 � u1Þ
srelaxU

and implies srelaxU ¼ ðaqÞ1
k

:

By using (4.34), we have the following estimate: srelaxU ¼ srelaxP
Z1
Z2
.

Thus, in the limit Z1 
 Z2, the timescale for velocity relaxation is much higher that the timescale

for pressure relaxation. In the case of solid particles of a ¼ 100 lm, density q1 	 5� 103 kg=m
3
and sound

speed of 5� 103 m/s in a gas under atmospheric conditions, we have

srelaxP / 10�8 s and srelaxU / 108srelaxP ¼ 1 s:

Thus the relaxation velocity under atmospheric conditions is very high compared to the pressure relaxation

timescale.

Consider now detonation conditions. The gas phase comes from the solid phase decomposition and is at

high temperature and density. Thus the assumption Z1 
 Z2 no longer holds. In this case, we suppose that

the characteristic time for pressure relaxation is srelaxP ¼ 2a=c1. During the detonation propagation, Z1 and

Z2 are of the same order of magnitude. The velocity relaxation time scale srelaxU ¼ ðaqÞ1
k becomes

srelaxU ¼ q1aðZ1 þ Z2Þ
2Z1Z2

:

Thus,

srelaxU / srelaxP:

The velocity relaxation timescale is of the same order as the pressure relaxation timescale. The pressure
relaxation timescale srelaxP under detonation conditions remains of the same order as under atmospheric

conditions (srelaxP / 10�8 s). This timescale is much smaller than the characteristic timescale of the events

under study. Indeed, this model is developed for an accurate computation of the detonation propagation at

the macroscopic scale.

For this type of applications, the analysis of the timescales of pressure and velocity relaxation compared

to macroscopic timescale justifies the use of numerical procedures with infinite rate of velocity and pressure

relaxation. Such procedure will be described in Section 5.
4.9. Model limitations

As mentioned in Section 1 and just before, this model has been derived for the propagation regime of

detonationwaves in condensed heterogeneous energeticmaterials. The propagation of this detonationwave is

always coupled to the interactions with surrounding materials. Thus, it is mandatory that interface problems

be solved in conjunction with the detonation dynamics. The present method fulfills these two goals.

Moreover, the multiphase method has another benefit. The model does not need mixture equation of

state, that are always based on limited validity assumptions. Only the pure phase equations of state are used
in conjunction with relaxation processes.

However, this model cannot be considered valid for the ignition and growth events that occur in con-

densed energetic materials. During ignition for example, part of the shock energy is focused into the

material heterogeneities (pores for example) and the ignition results from microscale phenomena: visco-

plastic pore collapse, shear banding, etc. Such phenomena involve solid–solid phase transitions accom-

panied by volumes changes, grain cracking, melting, low Reynolds number flows, etc. Such microscale

effects correspond to the so-called hot spots formation. It is clear that such events include extra physics

compared to the Euler equations. They are not considered in the present model and are out of the scope of
this paper.
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It is worth tomention that in the context of such sophisticatedmodelling,micro-mechanicalmodels have to

be coupled with a macro-scale model for waves propagation. Such issue has been addressed in Massoni et al.

(1999). The macroscopic multiphase model was composed of the mixture Euler equations. As mentioned in
the same reference, such model could be improved by replacing the macroscopic system by a model closed to

the present one. A first attempt of this type of couplingwas done inGavrilyuk and Saurel [18], in the simplified

situation of inert bubbly liquids with micro-inertia. Further investigations are necessary for the building

of a multiphase model with microstructure valid for ignition, growth and propagation of the detonation.
5. Numerical strategy

In detonation propagation applications, the relaxation processes timescales are very short compared to

the timescales of wave propagation. For numerical stability reasons, direct resolution of this model will

induce small time steps. We propose a splitting strategy to get free of this constraint. The same remark

holds for the mass transfer and chemical kinetics terms that are associated with their own timescales.

A splitting strategy is adopted that insures the stability of each step. Obviously, such strategy is not free

of inaccuracy, but it seems to be the only reasonable procedure in the context of the complex physics we

have to deal with.

The model to solve can be summarized in the following way:

oðaW Þk
ot

þ oðaF Þk
ox

þ oðaGÞk
oy

¼ F lag
I

oak
ox

þ Glag
I

oak
oy

þRelaxðW Þ þMassðaW Þ; ð5:1Þ

where the various vectors have already been defined except MassðaW Þ

MassðaW Þ ¼ _mk

qIR

; _mk; _mk~u0I ; _mkEIR; _mmk

 !
: ð5:2Þ

As already suggested by Baer and Nunziato [3] and Kapila et al. [22], the variables with subscript IR are

those of the solid phase ðIR ¼ 1Þ.
Better estimates for these variables can be obtained with the discrete equations method when each

conventional Riemann problem is replaced at the various interfaces by a reactive Riemann problem [10,19].

Such approach has been developed in LeMetayer et al. [27] in the context of evaporation waves. In our

context, the kinetic relation as well as the EOS being rather complex, the approach based on a reactive
Riemann solver is non-trivial. So we retain the estimates given previously.

Eq. (5.1) is then approximated by a second-order dimensional splitting [37]:

aWð Þnþ2 ¼ LyðDtÞLxðDtÞLxðDtÞLyðDtÞ aWð Þn: ð5:3Þ

Each one-dimensional L (Lx or Ly) operator is the composition of three operators:

LðDtÞ ¼ TransportðDtÞðsRelaxÞðDt=2ÞMassðDt=2Þ ð5:4Þ

Transport represents the one-dimensional hyperbolic non-conservative solver. Relax represents the relax-

ation solver. Mass represents the mass transfer solver.

As explained previously, the relaxation processes can be very fast compared to those of Transport. Then

an equilibrium procedure that assumes that the relaxation timescales tend to zero is applied. An example of

such procedure is given in Saurel and LeMetayer [34]. A detailed review of the optimal different numerical

procedures is given in Lallemand et al. [25]. In particular, the latter paper addresses general EOS, situations
involving a large number of phases and in some specific situations, exact procedures are available.
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The stiffness of the mass transfer appears when the characteristic timescale of the chemical decompo-

sition is very small compared to the characteristic timescale of the transport step. The chemical solver must

be accurate enough to maintain the accuracy of the coupled solution. To successfully integrate a stiff system
of chemical equations, a method with a variable local time step must be employed in order to maintain

accuracy. But the method must not be limited by fast timescales once they have decayed sufficiently.

Additionally, the use of a stiff integrator in a reacting-flow code require the minimum start-up cost. The

solver CHEMEQ2 meets all these requirements. Moreover, it has been specially designed for the integration

of chemical decomposition in a process-split approach. Mott et al. [30] have recently proposed this method.

It is a predictor–corrector scheme based on a Quasi-Steady-State-Approximation (QSSA). Its accuracy has

been proved to be second order on the overall time step Dt. The local time step selection is automatically

managed and its management is the same as proposed in [40].
The two preceding operators Relax andMass require careful treatment as provided in the cited references.

Analysis of these operators comes out of the scope of the present paper. We prefer to provide more details

about the Transport step in the context of the detonation hydrocode that will be used for the applications.

The basic ideas and formulas necessary for the development of Transport have already been derived in

Section 3. The details of its implementation and extension to second order are now summarized.

(a) Predictor step

(a.1) At each cell boundary, the length of contact is computed by the formulas of Tables 1 and 2 ac-

cording to the local volume fraction gradient. When dealing with an arbitrary number of phases the cor-

responding length of contact are obtained by following the procedure given in Appendix C. The numerical

procedure that follows extends easily to such general situation. For the sake of clarity we restrict the de-

scription to two phases only.
(a.2) In each cell, the primitive variables for the phase k are denoted Vk;i ¼ ða; q; u; v; p; fYmgÞk;i. At each

cell boundary Riemann problems are solved for each fluid pair ðp; qÞ. The convective flux along x=t ¼ 0 is

stored in F �ðp; qÞ as well as each Lagrangian flux along x=t ¼ u�ðp; qÞ and stored in F lag;�ðp; qÞ.
(a.3) According to the sign of u�ðp; qÞ solution of the Riemann problem, the phase function X �

k ðp; qÞ is
obtained as well as the jump ½X �

k ðp; qÞ�. Note that for k 6¼ p and k 6¼ q, X �
k ðp; qÞ and the jump ½X �

k ðp; qÞ� are
always zero. The other instances are described in Tables 1 and 2.

(a.4) All the ingredients are now available to estimate the solution at the intermediate time step tnþ1=2:

ðaW Þnþ1=2
1;i � ðaW Þn1;i
Dt=2

þ
ðXF Þn1;iþ1=2 � ðXF Þn1;i�1=2

Dx
¼

F lag½X1�
n

iþ1=2 þ F lag½X1�
n

i�1=2

Dx
; ð5:5Þ

XF
n
1;iþ1=2 ¼ maxð0; an1;i � an1;iþ1ÞX �

1;iþ1=2ð1; 2ÞF �
iþ1=2ð1; 2Þ þminðan1;iþ1; a

n
1;iÞX �

1;iþ1=2ð1; 1ÞF �
iþ1=2ð1; 1Þ

þmaxð0; an1;iþ1 � an1;iÞX �
1;iþ1=2ð2; 1ÞF �

iþ1=2ð2; 1Þ; ð5:6aÞ

XF
n
1;i�1=2 ¼ maxð0; an1;i�1 � an1;iÞX �

1;i�1=2ð1; 2ÞF �
i�1=2ð1; 2Þ þminðan1;i; an1;i�1ÞX �

1;i�1=2ð1; 1ÞF �
i�1=2ð1; 1Þ

þmaxð0; an1;i � an1;i�1ÞX �
1;i�1=2ð2; 1ÞF �

i�1=2ð2; 1Þ; ð5:6bÞ

F lag½X1�
n

iþ1=2 ¼ maxð0; an1;i � an1;iþ1Þ½X1��iþ1=2ð1; 2ÞF
lag;�
iþ1=2ð1; 2Þ

þmaxð0; an1;iþ1 � an1;iÞ½X1��iþ1=2ð2; 1ÞF �
iþ1=2ð2; 1Þ; ð5:6cÞ

F lag½X1�
n

i�1=2 ¼ maxð0; an1;i�1 � an1;iÞ½X1��i�1=2ð1; 2ÞF
lag;�
i�1=2ð1; 2Þ

þmaxð0; an1;i � an1;i�1Þ½X1��i�1=2ð2; 1ÞF
lag;�
i�1=2ð2; 1Þ: ð5:6dÞ
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The convective and Lagrangian fluxes are computed as detailed in (a.2) with the initial states of time tn:
F �
iþ1=2ðp; qÞ ¼ RPðV n

p;i; V
n
q;iþ1Þ and F lag;�

iþ1=2ðp; qÞ ¼ RPðV n
p;i; V

n
q;iþ1Þ. In the context of detonation waves, it is

recommended to use a non-linear Riemann solver, such as the HLLC solver of Toro [39] rather than a
linearized one, as the acoustic one used for the continuous limit determination.

(b) Variables extrapolation

(b.1) In each cell, the slope of the primitive variables dV nþ1=2
k;i are computed with a conventional limiter

procedure. Note that ak is one of these variables. It means that the cell contains a volume fraction gradient.

(b.2) Extrapolation of the variables on the cell boundary is done in a conventional way as follows:

V n
k;i�1=2;R ¼ V n

k;i �
dV n

k;i

2
and V n

k;iþ1=2;L ¼ V n
k;i þ

dV n
k;i

2
ð5:7Þ

from which the conservatives variables are deduced ðaW Þnk;i�1=2;R and ðaW Þnk;iþ1=2;L.

(b.3) From these variables, Riemann problem solutions and the different convective and Lagrangian

fluxes are computed as previously detailed in (a.2). The phase function at cell boundary are also determined

as in (a.3).

(c) Corrector step

The solution is updated by:

ðaW Þnþ1

1;i � ðaW Þn1;ij
Dt

þ
ðXF Þnþ1=2

1;iþ1=2 � ðXF Þnþ1=2
1;i�1=2

Dx
¼

F lag½X1�
nþ1=2

iþ1=2 þ F lag½X1�
nþ1=2

i�1=2

Dx
þ F lag½X1�

nþ1=2

i

Dx
; ð5:7Þ
XF
nþ1=2

1;iþ1=2 ¼ maxð0; anþ1=2
1;iþ1=2L � anþ1=2

1;iþ1=2RÞX
�
1;iþ1=2ð1; 2ÞF �

iþ1=2ð1; 2Þ

þminðanþ1=2
1;iþ1=2R; a

nþ1=2
1;iþ1=2LÞX �

1;iþ1=2ð1; 1ÞF �
iþ1=2ð1; 1Þ

þmaxð0; anþ1=2
1;iþ1=2R � anþ1=2

1;iþ1=2LÞX
�
1;iþ1=2ð2; 1ÞF �

iþ1=2ð2; 1Þ; ð5:8aÞ
XF
nþ1=2

1;i�1=2 ¼ maxð0; anþ1=2
1;i�1=2L � anþ1=2

1;i�1=2RÞX �
1;i�1=2ð1; 2ÞF �

i�1=2ð1; 2Þ

þminðanþ1=2
1;i�1=2R; a

nþ1=2
1;i�1=2LÞX

�
1;i�1=2ð1; 1ÞF �

i�1=2ð1; 1Þ

þmaxð0; anþ1=2
1;i�1=2R � anþ1=2

1;i�1=2LÞX
�
1;i�1=2ð2; 1ÞF �

i�1=2ð2; 1Þ; ð5:8bÞ
F lag½X1�
nþ1=2

iþ1=2 ¼ maxð0; anþ1=2
1;iþ1=2L � anþ1=2

1;iþ1=2RÞ½X1��iþ1=2ð1; 2ÞF
lag�
iþ1=2ð1; 2Þ

þmaxð0; anþ1=2

1;iþ1=2R � anþ1=2

1;iþ1=2LÞ½X1��iþ1=2ð2; 1ÞF �
iþ1=2ð2; 1Þ; ð5:8cÞ
F lag½X1�
nþ1=2

i�1=2 ¼ maxð0; anþ1=2
1;i�1=2L � anþ1=2

1;i�1=2RÞ½X1��i�1=2ð1; 2ÞF
lag;�
i�1=2ð1; 2Þ

þmaxð0; anþ1=2
1;i�1=2R � anþ1=2

1;i�1=2LÞ½X1��i�1=2ð2; 1ÞF
lag;�
i�1=2ð2; 1Þ; ð5:8dÞ
F lag½X1�
nþ1=2

i ¼ maxð0; anþ1=2
1;i�1=2R � anþ1=2

1;iþ1=2LÞ½X1��i�1=2ð1; 2ÞF
lag;�
i ð1; 2Þ

þmaxð0; anþ1=2

1;iþ1=2L � anþ1=2

1;i�1=2RÞ½X1��i�1=2ð2; 1ÞF
lag;�
i�1=2ð2; 1Þ: ð5:8eÞ

Within the corrector step, the convective and Lagrangian fluxes are computed as follows F �
iþ1=2ðp; qÞ ¼

RPðV nþ1=2
p;iþ1=2L; V

nþ1=2
q;iþ1=2RÞ and F lag;�

iþ1=2ðp; qÞ ¼ RPðV nþ1=2
p;iþ1=2L; V

nþ1=2
q;iþ1=2RÞ.



The corrector step is a trivial extension of formulas (5.5) and (5.6). Due to the presence of the internal

volume fraction gradient, a correction must be added F lag½X1�nþ1=2
i . The internal Lagrangian flux is

computed as follows: F lag;�
i ðp; qÞ ¼ RPðV nþ1=2

p;i�1=2R; V
nþ1=2
q;iþ1=2LÞ. This term is explained in Abgrall and Saurel [2].
6. Properties of the discrete hyperbolic operator

We address the issue of numerical stability of the Transport operator, that is its CFL stability condition.

Then, we show that under this constraint, the volume fraction is always bounded.

6.1. Constraint on the time step

The transport step reduces to

ðaW Þnþ1

1;i ¼ ðaW Þn1;i �
Dt
Dx

X
q;r¼1;2

Sqi ;riþ1
ðX �F �Þ1
	 

� F lag;�½X �
1 �


iþ1=2

ðqi; riþ1Þ

�
X

p;q¼1;2

Spi�1;qi ðX �F �Þ1
	

� F lag;�½X �
1 �


i�1=2

ðpi�1; qiÞ
!
: ð6:1Þ

Here qi is the state of the fluid q in the cell i. riþ1 is the state of the fluid r in the cell iþ 1. pi�1 is the state of

fluid p in cell i� 1. We note ðX �F �Þ1 � F lag;�½X �
1 � ¼ F num and h ¼ Dt

Dx the Courant number.

ðaW Þnþ1

1;i ¼ ðaW Þn1;i � h
X

q;r¼1;2

Sqi;r�uid.41.8015 Tm
(q)Td.41s4755 174.6141 368.614 ce90.2802 0 TD
(�)Tj(D)T9.96355 174.6141 368.61624e1 Tf
0.499 0 TD08i5e 0 0 6.42.23;2
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Fig. 10. Schematic representation of a possible configuration.
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F num
iþ1=2ð2; 2Þ ¼ F num

i�1=2ð2; 2Þ ¼ 0 because the indicator function X1 is 0 inside the fluid 2.

ðaW Þnþ1

k;i ¼ S111ððXW Þ1 � hðF num
iþ1=2ð1; 1Þ � F num

i�1=2ð1; 1ÞÞ þ S121ð0� hðF num
iþ1=2ð2; 1Þ � F num

i�1=2ð1; 2ÞÞ
þ S221ð0� hðF num

iþ1=2ð1; 2Þ � F num
i�1=2ð2; 2ÞÞ þ S222ð0� hðF num

iþ1=2ð2; 2Þ � F num
i�1=2ð2; 2ÞÞ; ð6:6Þ
ðaW Þnþ1

k;i ¼ S111ððXW Þnþ1

1;i Þ111 þ S121ððXW Þnþ1

1;i Þ121 þ S221ððXW Þnþ1

1;i Þ221 þ S222ððXW Þnþ1

1;i Þ222: ð6:7Þ

The evolution of the numerical variables ððXkW Þnþ1

i Þpqr is given by a numerical projection.

ððXkW Þnþ1

i Þpqr is a Godunov numerical scheme on a fixed grid (see Fig. 11):

ððXW Þnþ1

1;i Þpqr ¼
1

xiþ1=2 � xi�1=2

Z xiþ1=2

xi�1=2

ðXW Þnþ1

1;i ðx; tnþ1Þdx: ð6:8Þ

The formula (6.8) is valid as long as the waves coming from the boundaries i� 1=2 and iþ 1=2 do not cross

each other during the time step Dt. Thus,

Dt
Dx

max
k

ðjuj þ cÞk 6 1=2: ð6:9Þ

As S111 þ S121 þ S221 þ S222 ¼ 1, the macroscopic variables aW at time tnþ1 are obtained by a convex average

of the variables aW at time tn. Thus under the CFL condition (6.9), we get the positivity of the partial

density. We get the same CFL condition in the other configurations.
t n+1

fluid p 

 xi-1/2  x i+1/2  x i

t n

fluid q fluid q 
fluid r 

Fig. 11. Evolution of the variables ððXW Þnþ1

1;i Þpqr in the ðx; tÞ diagram.
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6.2. Boundedness of the volume fraction

The volume fraction must be bounded: 0 < anþ1
k;i < 1. The numerical scheme for the volume fraction is

deduced from (3.23):

anþ1
1;i ¼ an1;i � h uþi�1=2ð1; 2Þða1;i�1

n
� a1;iÞþð � 1Þ þ uþi�1=2ð2; 1Þða1;i � a1;i�1Þþð þ 1Þ

þ u�iþ1=2ð1; 2Þða1;i � a1;iþ1Þþð � 1Þ þ u�iþ1=2ð2; 1Þða1;iþ1 � a1;iÞþð þ 1Þ
o
:

We must investigate four cases.
The first case is a1;i�1 � a1;i P 0 and a1;i � a1;iþ1 P 0.

In this case, the numerical scheme for the volume fraction is:

anþ1
1;i ¼ an1;i � hf�uþi�1=2ð1; 2Þða1;i�1 � a1;iÞ � u�iþ1=2ð1; 2Þða1;i � a1;iþ1Þþg

that can be written in the incremental form

anþ1
1;i ¼ an1;ið1� huþi�1=2ð1; 2Þ þ hu�iþ1=2ð1; 2ÞÞ þ huþi�1=2ð1; 2Þa1;i�1 þ hu�iþ1=2ð1; 2Þa1;iþ1:

Thus according to the Harten�s criteria [19, p. 169], we get

minðan1;i�1; a
n
1;i; a

n
1;iþ1Þ6 anþ1

1;i 6 maxðan1;i�1; a
n
1;i; a

n
1;iþ1Þ

if 06 ð1� huþi�1=2ð1; 2Þ þ hu�iþ1=2ð1; 2ÞÞ6 1. This condition is fulfilled if the numerical scheme verifies the

CFL condition.

The second case is a1;i�1 � a1;i P 0 and a1;i � a1;iþ1 6 0.

In this case, the numerical scheme for the volume fraction is:

anþ1
1;i ¼ an1;i � hf�uþi�1=2ð1; 2Þða1;i�1 � a1;iÞ þ u�iþ1=2ð2; 1Þða1;iþ1 � a1;iÞg

that can be written in the incremental form

anþ1
1;i ¼ an1;ið1� huþi�1=2ð1; 2Þ þ hu�iþ1=2ð2; 1ÞÞ þ huþi�1=2ð1; 2Þa1;i�1 þ hu�iþ1=2ð2; 1Þa1;iþ1:

Thus

minðan1;i�1; a
n
1;i; a

n
1;iþ1Þ6 anþ1

1;i 6 maxðan1;i�1; a
n
1;i; a

n
1;iþ1Þ

if 06 ð1� huþi�1=2ð1; 2Þ þ ku�iþ1=2ð1; 2ÞÞ6 1. Again, this condition is fulfilled if the numerical scheme verifies

the CFL condition.

The two other cases are symmetrical.
7. Validation and test cases

The numerical model for multiphase flows is validated over different problems involving interfaces,

shock and detonation waves in one and two space dimensions. Each feature of the model and method is

tested over a separated effects test and is compared with an exact or experimental solution.

The shock tube test case is used to validate the method for interface problems. The shock propagation into
solid mixtures test is used to validate the thermodynamic properties of the model. Without knowing the

equation of state of the mixture, the shock wave is correctly propagated by using only the pure materials

equations of state and relaxation parameters. Then the calculation of the detonation reaction zone for an
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idealized explosive is examined. It is shown that the method computes correctly this wave by comparing the

numerical predictions versus the exact solution. We then consider problems where all these effects are cou-

pled: interfaces, mixture thermodynamics and detonations. The first of these two tests illustrates the model
capabilities in 1D and the second one consider a hypervelocity impact and detonation propagation in 2D.

7.1. Water–air shock tube

The solution of a 1D shock tube problem involving two different phases is presented: the high-pressure

chamber contains liquid water and the low-pressure chamber is filled with air. The aim of this test is to show

that the multiphase model and the numerical method are able to deal with contact/interfaces problems.

When such a test is done with the Euler equations and conservative schemes, since the equation of state
parameters of the two fluids are discontinuous at the interface (Table 3), conventional methods fail at the

second time step. The reason is that an artificial mixture has been created at the interface, for which the

computation of the pressure, sound speed is problematic. This issue has been addressed by many re-

searchers: Karni [23,24], Abgrall [1], Shyue [36], Fedkiw et al. [14], Saurel and Abgrall [32,33], etc. With the

present method, each fluid evolves in its own volume and remains separated from the others even in the

artificial diffusion zones. Moreover, the non-conservative and relaxation terms are able to insure the in-

terface conditions (equality of pressure and velocity). The initial interface that separates the liquid (at left)

and the gas (at right), is set at the position x ¼ 0:7 m, and the total length of the tube is equal to 1m. At the
initial time, the thermodynamic conditions of the liquid are: the pressure is 108 Pa, the density is 1000 kg/

m3, and the temperature is 373 K. The pressure of the gas is 105 Pa, its density is equal to 50 kg/m3 and the

temperature is 300 K. The right and left chambers contain nearly pure fluids: the volume fraction of gas in

the water chamber is 10�8 and vice versa in the gas chamber. This small amount of the minor phase is due to

the multiphase feature of the model.

Because fluids are almost pure here and there the initial interface an exact solution is available and will

be used for analysing the accuracy of the computed results.

The liquid water and the gas are governed by a modified stiffened gas equation of state:
e ¼ e0 þ pþcp1

ðc�1Þq �
p0þcp1
ðc�1Þq0

. The subscript 0 denotes a standard state. This form allows the calculation of the

temperature of the different phases, given by the following formula:

T ¼ 1

Cv

e

 
� e0 þ

p0 þ cp1
ðc� 1Þq0

� p1
q

� q
q0

� �c�1 p0 þ cp1
ðc� 1Þq0

�
� CvT0

�!
:

The various parameters of the EOS are given in Table 3.
Two simulations are performed with a different grid resolution: a coarse mesh with 100 cells while a fine

grid resolution uses 1000 cells. The numerical results are plotted at time 237.44 ls.
In Fig. 12, the main quantities of the flow are plotted : pressure, velocity, mixture density and tem-

perature. A direct comparison with the analytical solution can be made. The mixture temperature is plotted.

The mixture temperature is computed from the relation: Tm ¼
P

ðaqCvT ÞkP
ðaqCvÞk

. Whatever the grid resolution the

numerical temperature is free of oscillation. Mesh convergence of the temperature can be obtained, as

pointed by the resolution with the fine mesh. The distance between the interface and the shock being very
Table 3

Parameters of the EOS of liquid water and air for the shock tube problem

p1 (Pa) c Cv (J/kg/K) e0 (J/kg) q0 (kg=m
3
)

Liquid 6� 108 4.4 4180 617 1000

Gas 0 1.4 1000 0 50



Fig. 12. (a) Exact solution (solid line), 1000 cells (circles), 100 cells (triangles). (b) Mesh convergence analysis for the shock tube test

problem of (a). The lines with the circles represent the Err function associated to the first-order numerical scheme. The lines with

squares are associated to the second-order variant.
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small, the results with the coarse grid cannot be accurate. Computation of the temperature at the interface

is not a trivial issue for interface algorithms. Most methods produce strong oscillations or do not predict

the correct temperature level. This is most times related to conservation errors [29] or to convergence errors
[13]. This may have serious consequences when a chemical reaction takes place at the interface, as with

detonation applications. The present method predicts correctly the temperature on both sides of the

interface.

We have represented in Fig. 12(b) a mesh convergence analysis for this shock tube test problem. The Err

function represented corresponds to the L1 norm for the mixture variables (density, momentum and total

energy: qm ¼
P

ðaqÞk, ðquÞm ¼
P

ðaquÞk and ðqEÞm ¼
P

ðaqEÞk, respectively). It is plotted versus mesh size

varying over two orders of magnitude.

The slopes of the Err function for the mixture conservative variables are approximately:
• 0.6 for the first-order numerical scheme,

• 0.75 for the second-order version.

These results are in excellent agreement with convergence analysis performed in the case of single phase

Euler equations [17]. Here, the method has to deal with the presence of an interface, and converges similarly

as conventional schemes used for the Euler equations.

7.2. Waves propagation in chemically inert mixtures

Before studying the propagation of linear or non-linear waves in heterogeneous reactive media, it is

important to check that the multiphase model allows a correct propagation of these waves in the inert case.

Consider first the case of linear waves (i.e., acoustic waves). An asymptotic analysis of similar multiphase

model has been carried out by Kapila et al. (2000) in the limit of fast pressure and velocity relaxation. They

have shown that the equilibrium sound speed cm obeys the relation:

1

qmc2m
¼
X ak

qkc
2
k

ð7:1Þ

with qm ¼
P

akqk. This relation is known as the Wallis sound speed of the mixture and has been validated

by many experiments. Thus, in the limit of fast pressure and velocity relaxation, the present model predicts

correctly the propagation of acoustic wave. It is an important feature regarding detonation waves stability.

Consider now non-linear waves. The two-phase mixture does not admit conventional Rankine–Hu-

goniot relations because the latter relations result from the combination of the conservative, non-conser-

vative and relaxation terms. Thus an analytical validation is very difficult. But the two-phase shock wave

model prediction can be examined by comparing the numerical Hugoniot curve with the experimental one

for a given mixture. Solid alloys mixtures are well documented in the literature [28]. Such mixtures are quite
representative of a frozen sample of solid–gas mixtures as those produced into the reaction zone of a

condensed explosive.

We consider amixture of solid phases under piston impact. The piston impact is treated here as a boundary

condition. The computed solutions are compared with experimental Hugoniot curves for solid alloys [28].

These experimental data relate the shock velocity Us to the shocked material velocity Up : Us ¼ c0 þ sUp

where c0 and s are fit on the experimental Hugoniot curve. Under very strong impact conditions, the solids are

compressible and behave as fluids. In these conditions, the solid alloy can be considered as a multiphase

mixture. So we compute the numerical Hugoniot curve of the alloy with the multiphase model. The
multiphase model only needs the pure material equation of state. Each material is governed by the Stiffened

Gas equation of state with appropriate parameters given in Table 4. Two different alloys are considered: The

first is composed of epoxy and spinel. The second one is brass composed of copper and zinc.

Several unsteady impact problems have been computed with different piston velocity conditions. For

each 1D unsteady multiphase run, the shock velocity Us is determined, by examining for example the



Table 4

Parameters of the EOS of the different pure fluids

Density ðkg=m3Þ c p1 (GPa)

Copper 8924 4.22 32.4

Zinc 7139 4.17 15.7

Epoxy 1185 2.94 3.2

Spinel 3622 1.62 141.0
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pressure profiles at two successive instants. It is then plotted with the corresponding material velocity Up in

Fig. 13. Each point of the numerical curve corresponds to a 1D run. These numerical data are compared

with the experimental Hugoniot curve. An excellent agreement can be noted between both experimental

and numerical data.

The multiphase model predicts the shock propagation as a result of the pure fluid EOS and relaxation

processes between the phases. In a certain sense, it builds an ‘‘appropriate mixture EOS’’ and is free of

adjustable parameters. This test shows that the model is able to predict the hydrodynamic behaviour of an
arbitrary mixture without use of any mixture equation of state: only the pure materials equations of state

are necessary.

7.3. Computation of a detonation reaction zone

The ability of the multiphase model to account for chemical or mass transfers is now examined through

the following 1D simulation.

The impact of a high velocity projectile onto an explosive is considered. The shock wave is transmitted to
the explosive and transits to a detonation wave that propagates through the energetic material. From the

shock front (Neumann spike) chemical reactions occur until the point moving at the sonic velocity in the

frame of the shock (CJ point). The flow variables into the reaction zone are compared with the exact ZND

solution provided in Fickett and Davis [15]. The comparison between the exact and the numerical results

can be performed only in the reaction zone that corresponds to the validity domain of the ZND model.

The multiphase model involves two different phases: a solid phase (the explosive) and a gaseous phase

(detonation products). In order that the ZND solution be compared with the multiphase numerical results,
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Fig. 13. Us vs. Up: numerical (lines) and experimental (points) shock Hugoniot curves Left: Copper–Zinc mixture (brass) with an initial

zinc volume fraction of 0.29. Right: Epoxy–Spinel mixture with an initial epoxy volume fraction of 0.595.
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both phases are assumed to obey the same equation of state that is to say the ideal gas law, p ¼ ðc� 1Þqe,
with a polytropic coefficient c equal to 3.

In this specific case, the mass transfer terms for the reactive material are:

MassexploðaW Þ ¼ _mexplo=qexplo; _mexplo; _mexplouexplo; _mexploEexplo

� �
and for the detonation products: MassprodðaW Þ ¼ �MassexploðaW Þ.

The term qreact is the value of the combustion heat release: qreact ¼ 4:5156 MJ=kg. The mass transfer is

given by _mexplo ¼ �k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqmaexploqexploÞ

q
with k ¼ 2:106 s�1 and qm ¼

P
akqk is the mixture density.

Initially, the pressure is set at 1 bar and the densities of both phases are equal to 1600 kg=m
3
. The

computational domain is filled with the solid phase. But because of the multiphase feature of the model, a

small amount of the gaseous product is also present, with a volume fraction amin ¼ 10�6. The piston velocity

is 1000 m/s.

The total length of the domain is 0.3 m. One thousand cells are used, with a constant length (3.3 cells/
mm). For convenience, the time step is constant and equal to 2.33� 10�8 s. The numerical solutions are

plotted after 1400 time steps.

From the unsteady calculation the numerical velocity of the detonation front (8486 m/s) is compared

with the analytical one, i.e., 8500 m/s. From a magnified view of Fig. 14, not depicted here, the measured

reaction length is 5.2� 10�3 m while the exact one is 5.3� 10�3 m.

In Fig. 14, the numerical pressure and velocity are plotted with solid lines while the exact solution in the

reaction zone is plotted with symbols. The Neumann spike and the Chapman–Jouguet point are well

captured by the numerical method. The numerical solution (lines) converges to the exact one (symbols) in
the reaction zone. This good agreement is also observed for the mixture density in Fig. 15.

In Fig. 15, the phases density is also plotted. Some spurious oscillations are visible around x ¼ 0:03 m.

They are due to the well-known overheating problem [13]. For the present test, these oscillations have no

consequence on the calculation of the reaction zone. This test shows that the fluid densities are not in

equilibrium. This is not surprising the combustion releases energy to the gas, increasing its temperature. As

the fluids are in pressure equilibrium and out of equilibrium for the temperatures, they must have different

densities. This remark also shows that the use of a thermodynamic equilibrium assumption for the building

of a mixture equation of state in the context of the reactive Euler equations may lead to large errors.
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Fig. 14. Comparison of computed pressure and velocity profiles for a self-sustained detonation waves with the exact solution of the

ZND problem.
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Fig. 15. Comparison of computed mixture density for a self-sustained detonation waves with the exact solution of the ZND problem.

The computed phases densities are also shown.

528 A. Chinnayya et al. / Journal of Computational Physics 196 (2004) 490–538
7.4. Detonation wave in a condensed energetic material

The multiphase model is used to predict the detonation properties of a multicomponent condensed

energetic material through a one-dimensional simulation. This material is initially a mixture of different

chemical compounds: CHNO, ammonium perchlorate (AP) and aluminum particles. The complete de-

composition chemical scheme is summarized hereafter:

CaHbNcOd !
c
2
N2 þ dH2Oþ b

2

�
� d
�
H2 þ aC; ðR1Þ
NH4ClO4 ! 1:5H2Oþ 0:5N2 þ 1:25O2 þHCl; ðR2Þ
Alþ J3CO2 þ J3K3H2O ! 0:5Al2O3 þ J3Cþ J3K3H2; ðR3Þ
CþO2 ! CO2; ðR4Þ
2H2 þO2 ! 2H2O: ðR5Þ

The molecular coefficients of the CHNO molecule are: a ¼ 10:83, b ¼ 18:61, c ¼ 5:47, d ¼ 5:90. The co-

efficients in the reaction (R3) are: K3 ¼ 0:1 and J3 ¼ 3
2ð2þK3Þ

.

This chemical scheme is due to Baudin et al. [5] and involves several reactions rates. For such type of

solid–gas mixtures, the building of a mixture equation of state is not possible or not accurate as explained in

the introduction. We consider each phase as a multi-component mixture governed by a mixture EOS. But

the overall solid–gas mixture is treated as a separated flow.

The reactive material is governed by a multi-component Mie–Gruneisen equation of state (Appendix B)

whereas the detonation gaseous products are governed by a multi-component H9 equation of state (Ap-
pendix A). Considering the jth reaction involving the ith species that can be into the condensed or gas

phase, the chemical mechanism can be written in the form

XNsþNg

i¼1

m0ijXi !
XNsþNg

i¼1

m00ijXi for all j ¼ 1; . . . ;Nreact:
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Ns and Ng are the total amount of chemical species in solid and gaseous phase, respectively. Nreact is the total

number of chemical reactions. ½Xi� is the species volume concentrations of the ith component. The rate of

change of the different compounds must be now modelled. The products being in a solid state, a pressure-
dependent relation is generally used. Then, the time variation of the concentration is given by:

½ _Xi� ¼
XNreact

j¼1

m00ij � m0ij
s0j

YNgþNs

l¼1

½Xl�b
j
l

 !
with s0j is a function of the relaxed pressure:

1

s0j
¼ Ajð

p
p0
Þn:

Aj, p0 and n are parameters that depend on the jth reaction. There is no difficulty to obtain the expression

of the mass transfer:

_mi ¼
XNreact

j¼1

m00ij � m0ij
sj

YNs

ks¼1

ðaqÞsYks
	 
bjks YNg

kg¼1

ðaqÞgYkg
� �bjkg !

The values of the different parameters can be found in Baudin et al. [6]. They are summarized in Table 5:

In the computations, the condensed explosive has the initial density of 1800 kg/m3 and is impacted by a

projectile at a velocity equal to 400 m/s. The multiphase model necessitates that initially a small amount of

gas exists in the computational domain. We suppose that some gaseous water is present with an initial gas

volume fraction of 10�3. The explosive is initially at rest under atmospheric conditions.
The length of the domain is equal to 1 m. The number of numerical cells is equal to 1000. The time step is

equal to 0.5 CFL.
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Fig. 16. Pressure and mixture density profiles at different times.

Table 5

Kinetic parameters of the chemical scheme (R1)–(R5)

Reaction index j Aj (s
�1) Reaction order bj

1 1� 105 bCHNO ¼ 1

2 0:085� 105 bNH4ClO4
¼ 1

3 0:075� 105 bAl ¼ 1;bH2O
¼ 1; bCO2

¼ 1

4 1� 105 bC ¼ 1;bO2
¼ 1

5 1� 105 bH2
¼ 1; bO2

¼ 1=2
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In Fig. 16, the pressure and the mixture density profiles are plotted for different times. The stable det-

onation wave is obtained at x ¼ 0:7 m.

The specificity of the chemical composition leads to a partial decomposition of the reactants. In Fig. 17,
profiles of solid and gaseous phase volume fraction are plotted when the detonation wave is stable. Up-

stream the CJ point, there is a two-phase mixture made of around 30% of gas and 70% of solid: this point

also shows that a multiphase description is necessary.

With the multiphase model proposed, the composition of each phase is accurately determined. In

Fig. 18, the different mass fraction profiles of the chemical species in each phase are plotted. A magnified

view of the reaction zone is presented. In the solid phase, three characteristics times associated to three

chemical reactions can clearly be seen. The CHNO decomposition is very fast and complete. This reaction

produces the necessary chemical species as well as the pressure and temperature conditions to initiate the
two other reactions. The entire AP burns on a larger timescale. On the contrary, the aluminium is not

totally burnt and the final solid mixture is made of aluminium and its oxide. The evolutions of the various

species clearly show that a thermodynamic equilibrium computation and the derivation of reduced equa-

tion of state for the gas phase, as well as for the condensed is not possible. It is the reason why theoretical

equations of state are used (Appendices A and B). Their use necessitates the determination of the various
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Fig. 18. Mass fractions of the solid and of the gaseous products.



A. Chinnayya et al. / Journal of Computational Physics 196 (2004) 490–538 531
species concentrations as well as the thermodynamic variables in each phase. This justifies the use of the

multiphase model.

7.5. Two-dimensional detonation simulation

In this section, a two-dimensional simulation is presented and shows the ability of the model to predict

the behaviour of practical systems. A projectile moving in the air impacts a tank made in copper, containing

a liquid explosive (nitromethane). The detonation propagation will increase the pressure in the tank until

complete destruction. A schematic view of the system is presented in Fig. 19. In addition to the propagation

of the detonation wave, some specific problems appear: they are related to the contact/material interfaces,

traction/cavitation of solids, temperature dependence of the chemical mechanism. These phenomena are to
be involved in the model.

Four different phases (and as many EOS) are necessary for the present computation: one for the air

(ideal gas), one for the copper (stiffened gas), one for the liquid NM [11] and the fourth for the gaseous

detonation products (JWL, [26]). All equations of state and chemical kinetic parameters are provided in

Baudin et al. [7] following the experimental facility and methods presented in Serradeill et al. [35].

The initial conditions correspond to a system at standard conditions, only the projectile has a velocity

equal to 1930 m/s. The volume fraction of each phase is at least equal to 10�4 if it is a minor one at the

location considered, about one otherwise.
The physical length of the domain is 78� 10�3 m, and the half-height is 50� 10�3 m. The mesh used here

is a 100� 50 cells and the total CPU time is about 5 h on a 2 GHz PC. The time step is restricted to 0.2 CFL

because of the chemical stiffened of the Arrhenius laws of nitromethane. In Fig. 20, the mesh is shown. The

mixture density seems to be the more pertinent quantity to appreciate the different steps of the overall

phenomenon. Its evolution is depicted in Fig. 20.

In Fig. 20(a), the initial mixture density is plotted and one can easily recognize the wall tank and the

projectile. In the next view, the moving projectile has penetrated the envelope, which is deforming. The

initial shock wave is now transmitted to the liquid explosive. In Fig. 20(c), a curved detonation wave is
observed which propagates in the liquid. One can also see in this figure, that a very low-pressure zone inside

the projectile. This is due to the 2D rarefactions wave that reflects from the free boundaries of the projectile.

Focusing of this wave onto the axis leads to an expansion/traction of the copper as it is described in

Thouvenin [38]. In Fig. 20(d), the detonation wave has reached the upper wall. This interaction has am-

plified the front curvature: lateral expansions induce front curvature. It is noticeable that the left wall above

the projectile has a motion toward the left: it is due to the pressure difference between the inside and the

outside of the tank.
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Fig. 19. Presentation of the system simulated by a two-dimensional calculation.



Fig. 20. Grid and evolution of the mixture density in the two-dimensional case.
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8. Conclusion

Two important issues have been addressed in the present paper:

• the computation of macroscopic material interfaces and,

• the thermodynamic modelling of condensed explosives.
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These two challenging problems have been solved with a generalized multiphase model and resolution

method. It was important to consider these issues in a general framework since the detonation dynamics is

always coupled with surrounding materials through their interactions at material interfaces. To succeed in
this task, the discrete equations method (DEM) of Abgrall and Saurel [2] has been the subject of important

extensions:

• The averaging method has been revisited and re-interpreted in terms of geometrical averages only. No

stochastic average is used.

• The flow topology has been chosen as representative of the granular mixture. By deriving the discrete

model for such topology a model be valid for material interfaces as well as for packed solid granular

beds has been obtained. The continuous limit of this discrete model has also been determined and anal-

ysed. It has provided relaxation coefficients that generalize the conventional formulas. These coefficients
prove that the model is suited to fluid mixtures evolving essentially under a single velocity and pressure,

in the context of the very high pressure conditions of detonation physics. The same analysis provides

estimates for the interface pressure and velocity. The resulting thermo-mechanical model is closed and

is free of parameter.

• The multiphase hydrodynamic model, used for detonation wave propagation is free of mixture equation

of state. Only the pure materials equation of state are necessary. They require the solid and gas chemical

compositions, that are determined.

• The model is shown to obey a dissipative inequality.
• Applications involving detonations in condensed material involve several fluids: the condensed phase,

the gas products, a solid or liquid phase representing the surrounding material, the ambient air. Our

strategy is to solve the same equations everywhere, with the same numerical method. In this context,

the model needs to be extended to an arbitrary number of fluids. Both model and numerical method have

been extended in this direction.

• The method has been extended to 2D and several validation problems have been examined.

The main perspective of this work is to model micro-structural effects that occur during shock initiation

of condensed energetic materials. When a shock wave propagates through a granular material, part of the
energy is focused into micro-structural defects and the micro-mechanical motion accompanied with dis-

sipation at the same scale forms so called ‘‘hot spots’’. Modelling the effects at this scale poses difficulties, as

well as the coupling between micro-scale events to the wave dynamics at the macro-scale. This topic has

been addressed in Massoni et al. (1999). The macroscopic model was composed of the mixture Euler

equations and the microscopic one was based on visco-plastic pore collapse equations. The macroscopic

model could be improved by employing the approach developed herein. Such issue has been addressed by

Gavrilyuk and Saurel [18] in the simplified situation of non-reacting bubbly liquids.
Appendix A. The multi-component H9 equation of state for the gas products

The H9 equation of state is a multi-component equation of state used to describe gaseous detonation

products. It is a fifth-order virial expansion, specifically developed for detonation of CHNO-type explo-

sives. The pressure is given by

Pg ¼
R
Mg

qgTgrðxÞ;

where x ¼ XqgT
�1=3
g and X ¼ k

P
kg¼1;...;Ng

Ykg
Mkg

lkg and rðxÞ is a fifth-order polynomial.In these expressions,

Ykg, Mkg and lkg are the mass fraction, the molar mass and the covolume of the kgth gaseous species, k is an

adjustable parameter (k ¼ 63:5� 10�6 mol=m
3
), R the Avogrado constant (R ¼ 8:314 J=K mol) and Mg the

molar of the gas mixture.
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The internal energy is given by:

eg ¼ eg;0ðZÞ þ
R
Mg

Tg
rðxÞ � 1

3
;

where eg;0ðZÞ ¼
P

kg YkgðakgZ2 þ bkgZ þ ckgÞ and

Z ¼
Tg if Tg 6 1200 K;

Tg 1þ 2
lnðTg=1200Þ

ln Pg

� �
if Tg > 1200 K

(
The fakg; bkg; ckggkg¼1;...;Ng

are fitted coefficients [20].

The sound speed of the H9 equation of state is given by

c2g ¼
dPg
dqg

����
gg;Ykg

; i:e:; c2g ¼
oPg
oqg

����
Tg;Ykg

þ oPg
oTg

����
qg;Ykg

Pg
q2
g

� oeg
oqg

����
Tg;Ykg

oeg
oTg

����
qg;Ykg

:

Appendix B. Multi-component Mie–Gruneisen equation of state for the solid reactant

A multi-component equation of state has been built in order to reproduce the behaviour of heteroge-

neous condensed materials under shock waves from the various thermodynamic parameters of the various

components.

The equation of state can be written under the following form:

es ¼ e0s þ CvTs and Ps ¼ P 0
s þ ðCqsÞCvTs;

where C ¼ CðfYksgÞ is the Gruneisen coefficient and Cv ¼
P

ks YksCv;ks the specific heat at constant volume of

the multi-component solid and Cv;ks is the specific heat at constant volume of the ksth component of the solid.

The first part of the internal energy e0s is given by the relation

e0s ¼ e0s1ðq; fYksgÞ þ e0s2ðq; fYksgÞ

with e0s1ðq; fYksgÞ ¼
P

ks Ykse
0
ks þ Qðq; fYksgÞ, Q is a rational quotient function of the solid density

and of its mass fraction. The second function reads e0s2ðq; fYksgÞ ¼ �CvT0 expðCxðqÞÞ with xðqÞ ¼ q�q0
q .

The pressure P 0
s is defined by P 0

s ¼ P 0
s1 þ P 0

s2 with

P 0
s1 ¼ � oe0s1

oð1=qÞ

����
Yks

and P 0
s2 ¼ � oe0s2

oð1=qÞ

����
Yks

:

The sound speed for the multi-component solid is therefore

c2s ¼
dPs
dqs

����
gs;Yks

¼

Ps
q2
s

� oes
oqs

����
Ps;Yks

oes
oPs

����
qs;Yks

:

Appendix C. Determination of the contacts surfaces at the cells boundaries for an arbitrary number of fluids

We have developed in Section 3 and summarized in Tables 1 and 2 the calculation method for the
contact surfaces at the cells boundaries for mixtures involving two phases only. We now develop the cal-

culation procedure in the case of a multiphase mixture.
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At a given cell boundary each fluid occupies on the right and left sides a fraction of the cross section. We

denote this surface fraction Sk;R and Sk;L, where the index k represents the phase and the subscripts R and L

the right and left sides respectively, relative to the cell boundary.
These surface fractions are defined by: Sk;R ¼ �Xk ¼ 1

Dy

R Dy
0

Xk dy.
In the following procedure, these surface fractions are assumed equal to the volume fractions: Sk ¼ ak.
Let us first examine the particular case of two phases first. The method proceed as a recurrence process in

which the initial data corresponds to the left and right surface fractions with respect to the cell boundary

(i� 1=2 in this example):

Sð0Þ
1;L ¼ a1;i�1; Sð0Þ

1;R ¼ a1;i;

Sð0Þ
2;L ¼ a2;i�1; Sð0Þ

2;R ¼ a2;i

The superscript (0) represents the initial state of the recurrence procedure. To proceed to the next step,

some kind of continuity assumption has to be formulated in each phase. We assume that each phase has the

maximum possible contact surface with itself. This maximum contact surface cannot exceed the smallest of

the two surfaces of a given phase present at the cell boundary. This assumption provides the first two
contact surfaces at the cell boundary:

S11 ¼ minðSð0Þ
1;L; S

ð0Þ
1;RÞ and S22 ¼ minðSð0Þ

2;L; S
ð0Þ
2;RÞ:

From this result, the remaining available surfaces on the right and left sides of the cell boundary are readily

obtained. It determines the next step of the recurrence formula:

Sð1Þ
1;L ¼ Sð0Þ

1;L � S11; Sð1Þ
1;R ¼ Sð0Þ

1;R � S11;

Sð1Þ
2;L ¼ Sð0Þ

2;L � S22; Sð1Þ
2;R ¼ Sð0Þ

2;R � S22:

The contact between two surfaces will occur necessary with the smallest of the two remaining surfaces:

S12 ¼ minðSð1Þ
1;L; S

ð1Þ
2;RÞ and S21 ¼ minðSð1Þ

2;L; S
ð1Þ
1;RÞ.

These results are summarized in Table 6:

It can be easily checked that S11 þ S12 þ S21 þ S22 ¼ 1 as well as S11 þ S12 ¼ a1;i�1, S11 þ S12 ¼ a1;i�1,
S11 þ S21 ¼ a1;i and S22 þ S12 ¼ a2;i. These results are the same as the ones proposed initially in Table 2.

We now examine the case with three phases. As previously the initial data corresponds to the left and

right surface fractions with respect to the cell boundary:

Sð0Þ
1;L ¼ a1;i�1; Sð0Þ

1;R ¼ a1;i;

Sð0Þ
2;L ¼ a2;i�1; Sð0Þ

2;R ¼ a2;i;

Sð0Þ
3;L ¼ a3;i�1; Sð0Þ

3;R ¼ a3;i:

With the help of the continuity assumption we get:

S11 ¼ minðSð0Þ
1;L; S

ð0Þ
1;RÞ; S22 ¼ minðSð0Þ

2;L; S
ð0Þ
2;RÞ; S33 ¼ minðSð0Þ

3;L; S
ð0Þ
3;RÞ:

From which we determine the remaining surfaces:

Sð1Þ
1;L ¼ Sð0Þ

1;L � S11; Sð1Þ
1;R ¼ Sð0Þ

1;R � S11;

Sð1Þ
2;L ¼ Sð0Þ

2;L � S22; Sð1Þ
2;R ¼ Sð0Þ

2;R � S22;

Sð1Þ
3;L ¼ Sð0Þ

3;L � S33; Sð1Þ
3;R ¼ Sð0Þ

3;R � S33:



Table 6

Contact surfaces at cell boundary (i� 1=2) for a two-phase mixture

Contact type Contact surface

1–1 S11 ¼ minða1;i�1; a1;iÞ
1–2 S12 ¼ minða1;i�1 � S11; a2;i � S22Þ
2–1 S21 ¼ minða1;i � S11; a2;i�1 � S22Þ
2–2 S22 ¼ minða2;i�1a2;iÞ
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We now need another assumption associated with the mixture topology. A ‘‘priority’’ has to be defined for

the contact of the various phases. Imagine that phase 1 is the solid reacting phase, phase 2 its reaction

product and phase 3 an inert phase. It is legitimate to give a priority to contact between the solid phase and

its reaction products. But the contact surface between these two phases cannot exceed the smallest of the

two surfaces present at the cell boundary. Thus,

S12 ¼ minðSð1Þ
1;L; S

ð1Þ
2;RÞ and S21 ¼ minðSð1Þ

2;L; S
ð1Þ
1;RÞ:

We then deduce:

Sð2Þ
1;L ¼ Sð1Þ

1;L � S12; Sð2Þ
1;R ¼ Sð1Þ

1;R � S21;

Sð2Þ
2;L ¼ Sð1Þ

2;L � S21; Sð2Þ
2;R ¼ Sð0Þ

2;R � S12;

Sð2Þ
3;L ¼ Sð1Þ

3;L; Sð2Þ
3;R ¼ Sð1Þ

3;R:

From which the remaining contact surfaces are deduced: S13 ¼ minðSð2Þ
1;L; S

ð2Þ
3;RÞ, S23 ¼ minðSð2Þ

2;L; S
ð2Þ
3;RÞ,

S31 ¼ minðSð2Þ
3;L; S

ð2Þ
1;RÞ, S32 ¼ minðSð2Þ

3;L; S
ð2Þ
2;RÞ. These results are summarized in Table 7.

This procedures shows certain degrees of freedom for the choice of these contact surfaces, provided that
the various saturation constraints be fulfilled.

Table 7 gives an example when the contact of the phases with themselves is the first priority, and when

the contact between the reactive material and its products is the second priority.

From this observations, a general recurrence procedure can be proposed. It necessitates the definition of

contact priorities at each step m of the recurrence process between two phases: phase k and its priority phase

pmk during step m.
Example: Preceding system with 3 phases.

m ¼ 0; p01 ¼ 1; p02 ¼ 2 and p03 ¼ 3
Table 7

Contact surfaces at cell boundary (i� 1=2) for a mixture with three phases: phase 1 is a reactive material, phase 2 its reaction products

and phase 3 an inert material

Contact type Contact surface

1–1 S11 ¼ minða1;i�1; a1;iÞ
1–2 S12 ¼ minða1;i�1 � S11; a2;i � S22Þ
2–1 S21 ¼ minða1;i � S11; a2;i�1 � S22Þ
2–2 S22 ¼ minða2;i�1; a2;iÞ
1–3 S13 ¼ minða1;i�1 � S11 � S12; a3;i � S33Þ
2–3 S23 ¼ minða2;i�1 � S22 � S21; a3;i � S33Þ
3–1 S31 ¼ minða3;i�1 � S33; a1;i � S11 � S21Þ
3–2 S32 ¼ minða3;i�1 � S33; a2;i � S22 � S12Þ
3–3 S33 ¼ minða3;i; a3;i�1Þ
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m ¼ 1; p11 ¼ 2;
m ¼ 2; p21 ¼ 3 and p22 ¼ 3:

From these priorities, the contact surfaces at the cell boundary are computed at each step by the formulae:

Sk;pmk ¼ minðSm
k;L; S

m
pmk ;R

Þ and Spmk ;k ¼ minðSm
pmk ;L

; Sm
k;RÞ.

The remaining surfaces at the next step of the recurrence procedure are obtained by:

Smþ1
k;L ¼ Sm

k;L � Sk;pmk and Smþ1
k;R ¼ Sm

k;R � Spmk ;k:

It must be checked at the last step (m ¼ 2 here) that all Smþ1
k;L and Smþ1

k;R are zero.
References

[1] R. Abgrall, How to prevent pressure oscillations in multicomponent flows: a quasi-conservative approach, J. Comput. Phys. 125

(1996) 150–160.

[2] R. Abgrall, R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys. 186 (2)

(2003) 361–396.

[3] M.R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular

materials, Int. J. Multiphase Flows 12 (1986) 861–889.

[4] G. Baudin, Un code thermochimique adapt�e au calcul des caract�eristiques de d�etonation des explosifs aluminis�es. Europyro 1993,

Strasbourg, 1993, pp. 409–418 (in French).

[5] G. Baudin, M. Cauret, Y. Lagarde, Mod�elisation du comportement d�etonique d�explosifs de type CHNO, Rapport du Centre

d�Etudes de Gramat, 1999 (in French).

[6] B. Baudin, D�etonation, in: 5th Summer School CNRS-SFT 26th June–1st July 2000, Porquerolles, France (Edited by Ecole

Polytechnique de Marseille, Universit�e de Provence, France, 2000 (in French)).

[7] G. Baudin, C. Le Gallic, R. Serradeill, Amorc�age par choc et d�etonation du nitrom�ethane. Partie 2 – Mod�elisation et simulation

num�erique des m�ecanismes r�eactifs, in: Fifth International Symposium of High Dynamic Pressures, June 23–27, Saint-Malo,

France, Tome 1, 2003, pp. 241–254 (in French).

[8] D.J. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Meth. Appl. Mech. Eng. 99 (1992) 235–

394.

[9] P.B. Butler, M.F. Lambeck, H. Krier, Modeling of shock development and transition to detonation initiated by burning in porous

propellants beds, Combust. Flame 46 (1982) 75–93.

[10] A. Chorin, Random choice methods with applications to reacting gas flows, J. Comput. Phys. 25 (1977) 253–272.

[11] G. Cochan, J. Chan, Shock initiation and detonation models in one and two dimensions, Lawrence National Laboratory report,

1979.

[12] D.A. Drew, S.L. Passman, Theory of multicomponent fluids, in: Applied Mathematical Sciences, vol. 135, Springer, New York,

1998.

[13] R. Fedkiw, A. Marquina, B. Merriman, An isobaric fix for the overheating problem in multimaterial compressible flows, J.

Comput. Phys. 148 (2) (1999) 545–578.

[14] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The Ghost

Fluid Method), J. Comput. Phys. 152 (1999) 457–492.

[15] W. Fickett, W.C. Davis, Detonation, University of California Press, 1979.

[16] L.E. Fried, Cheetah 1.39 User�s Manual, Lawrence Livermore National Laboratory, Energetic Materials Center, 1996.

[17] T. Gallouet, J.M. H�erard, N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS, Int. J.

Numer. Meth. Fluids 39–12 (2002) 1073–1138.

[18] S. Gavrilyuk, R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput.

Phys. 175 (1) (2002) 326–360.

[19] E. Godlewski, P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin, 1996.

[20] O. Heuz�e, Equation of state of detonation products: influence in the repulsive intermolecular potential, Phys. Rev. A 34 (1) (1986)

428–433.

[21] A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff, D.S. Stewart, Two-phase modelling of DDT: structure of the velocity relaxation

zone, Phys. Fluids 9 (1997) 3885–3897.

[22] A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modelling of DDT in granular materials: reduced

equations, Phys. Fluids 13 (2001) 3002–3024.



538 A. Chinnayya et al. / Journal of Computational Physics 196 (2004) 490–538
[23] S. Karni, Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys 112 (1994) 31–43.

[24] S. Karni, Hybrid multifluid algorithm, SIAM J. Sci. Comput. 17 (1996) 1019–1039.

[25] M.H. Lallemand, A. Chinnayya, O. LeMetayer, Pressure relaxation procedures for multiphase flows, Int. J. Numer. Meth. Fluids,

in revision, 2004.

[26] E.L. Lee, H.C. Horning, J.W. Kury, Adiabatic Expansion of HIFH Explosives Detonation Products, Lawrence Radiation

Laboratory, University of California, Livermore, 1968, TID 4500-UCRL 50422.

[27] O. Le Metayer, J. Massoni, R. Saurel, Modelling evaporation waves using reactive Riemann solver, in preparation, 2004.

[28] S.P. Marsh, LASL Shock Hugoniot Data, University of California Press, 1959.

[29] J. Massoni, R. Saurel, B. Nkonga, R. Abgrall, Proposition de m�ethodes et mod�eles eul�eriens pour les probl�emes �a interfaces entre

fluides compressibles en pr�esence de transfert de chaleur, Int. J. Heat Mass Transfer 45 (6) (2000) 1287–1307 (in French).

[30] D.R. Mott, E.S. Oran, B. Van Leer, New quasi-steady-state and partial equilibrium methods for integrating chemically reacting

systems, J. Comput. Phys. 164 (2000) 407–428.

[31] R. Saurel, M. Larini, J.C. Loraud, Numerical modelling of deflagration–detonation transition produced by laser impact on

granular explosives, Comput. Fluid Dyn. J. 1 (2) (1992) 250–261.

[32] R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150

(1999) 425–467.

[33] R. Saurel, R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (3) (1999) 1115–1145.

[34] R. Saurel, O. Le Metayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J.

Fluid Mech. 431 (2001) 239.

[35] R. Serradeill, C. Le Gallic, P. Bouinot, G. Baudin, Shock ignition and detonation of nitromethane – Part 1: experimental

determination of reactive mechanisms, in: Fifth International Symposium High Dynamic Pressures, June 23–27, Saint-Malo,

France, Tome 1, 2003, pp. 155–166.

[36] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys. 142 (1998)

208.

[37] Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (3) (1968) 506–517.

[38] J. Thouvenin, D�etonique, Collection du Commissariat �a l�Energie Atomique, 1997 (in French).

[39] E.F. Toro, Riemann Solvers and Numerical Methods for Fluids Dynamics, Springer, Berlin, 1997.

[40] T.R. Young, A subroutine for solving stiff ordinary differential equations, Naval Research Laboratory memorandum Report

4091,Washington, DC, 1980.


	Modelling detonation waves in heterogeneous energetic materials
	Introduction
	Theoretical model
	The general model

	Building of a two-dimensional discrete multiphase model
	Local instantaneous pure fluid equations
	Average discrete equations
	Approximation of the temporal term I1
	Approximation of the horizontal convective flux I2
	Approximation of horizontal Lagrangian flux I4
	Summary of the discrete averaged equations

	Continuous limit of the discrete equations
	Continuous limit of the temporal term
	Continuous limit of the horizontal convective flux
	Continuous limit of the horizontal Lagrangian flux
	The continuous model
	Mathematical analysis of the continuous model
	Dissipative inequality
	Physical interpretation
	Timescales for the relaxation processes
	Model limitations

	Numerical strategy
	Properties of the discrete hyperbolic operator
	Constraint on the time step
	Boundedness of the volume fraction

	Validation and test cases
	Water-air shock tube
	Waves propagation in chemically inert mixtures
	Computation of a detonation reaction zone
	Detonation wave in a condensed energetic material
	Two-dimensional detonation simulation

	Conclusion
	The multi-component H9 equation of state for the gas products
	Multi-component Mie-Gruneisen equation of state for the solid reactant
	Determination of the contacts surfaces at the cells boundaries for an arbitrary number of fluids
	References


